

A KINETIC MODEL OF SODIUM-WATER REACTION

APPLIED TO DYNAMIC SIMULATION OF LEAK DETECTION
IN THE CORE COMPONENTS TEST LOOP

by

D. Saphier

PLEASE RETURN TO MFC BRANCH LIBRARY

BASE TECHNOLOGY

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS
Prepared for the U. S. ENERGY RESEARCH
AND DEVELOPMENT ADMINISTRATION

The facilities of Argonne National Laboratory are owned by the United States Government. Under the terms of a contract (W-31-109-Eng-38) between the U.S. Energy Research and Development Administration, Argonne Universities Association and The University of Chicago, the University employs the staff and operates the Laboratory in accordance with policies and programs formulated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona
Carnegie-Mellon University
Case Western Reserve University
The University of Chicago
University of Cincinnati
Illinois Institute of Technology
University of Illinois
Indiana University
Iowa State University
The University of Iowa

Kansas State University
The University of Kansas
Loyola University
Marquette University
Michigan State University
The University of Michigan
University of Minnesota
University of Missouri
Northwestern University
University of Notre Dame

The Ohio State University
Ohio University
The Pennsylvania State University
Purdue University
Saint Louis University
Southern Illinois University
The University of Texas at Austin
Washington University
Wayne State University
The University of Wisconsin

NOTICE-

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-owned rights. Mention of commercial products, their manufacturers, or their suppliers in this publication does not imply or connote approval or disapproval of the product by Argonne National Laboratory or the U. S. Energy Research and Development Administration.

Printed in the United States of America
Available from
National Technical Information Service
U. S. Department of Commerce
5285 Port Royal Road
Springfield, Virginia 22161
Price: Printed Copy \$5.00: Microfiche \$3.00

Distribution Category: LMFBR Sodium Technology (UC-79a)

ANL-75-22

ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, Illinois 60439

A KINETIC MODEL OF SODIUM-WATER REACTION
APPLIED TO DYNAMIC SIMULATION OF LEAK DETECTION
IN THE CORE COMPONENTS TEST LOOP

by

D. Saphier*

July 1976

^{*}On leave from the Israel Atomic Energy Commission Soreq Nuclear Research Centre

TABLE OF CONTENTS

		Page
ABST	TRACT	9
I.	INTRODUCTION	9
II.	THE CCTL LEAK-DETECTION EXPERIMENTAL SETUP	10
III.	THE KINETICS OF SODIUM-WATER INTERACTIONS	12
	A. The Sodium-Water Reactions	12
	B. Hydrogen Equilibrium Concentration in Sodium	14
	C. Decomposition Rate of Sodium Hydroxide	14
	D. Dissociation Pressure of Sodium Hydride	15
	E. Hydrogen Absorption by Sodium	15
	F. Decomposition Rate of Sodium Hydride	16
	G. Kinetic Equations	16
IV.	DYNAMICS OF SODIUM-WATER REACTION-PRODUCT PROPAGATION	17
	A. Sodium Flow and Concentration Changes	17
	B. Hydrogen Partial Pressure in the Cover Gas	18
	C. Hydrogen-gas Migration	19
	D. Dynamics of a Pipe Segment	20
v.	THE COLD TRAP	20
	A. Cold-trap Efficiency	21
	B. Cold-trap Dynamics	21
	C. Solubility of Reaction Products	21
VI.	DETECTORS	22
VII.	A TYPICAL DATA SET TO BE USED WITH THE SIMULATION .	22
VIII.	SUMMARY OF ASSUMPTIONS	27

TABLE OF CONTENTS

			Page
IX.	SA	MPLE CALCULATIONS	29
	A.	Changes in Reaction-product Concentration as a Result of a Short, 0.075-lb Leak	29
	В.	Changes in Reaction-product Concentration as a Result of a 70-sec, 0.0001-lb/sec Leak	30
	C.	Effect of Changing Flow Rate	32
	D.	Simulation of a Tightly Coupled Loop	37
	E.	Effect of Cold-trap Operation	40
	F.	Effect of Different Reaction Rates	41
	G.	Effect of Leak Location	42
X.	EX	PERIMENTAL VERIFICATION	42
XI.	SU	MMARY AND CONCLUSIONS	44
API	PEN	DIXES	
	Α.	Mathematical Model Used in CCTL Dynamic Simulation Program (CCTL-DYSP)	47
		 An Ideal Mixing Plenum. Node with Cover Gas. Pipe Node and Generating Delay Functions. Cold Trap. Detectors. 	47 49 50 50
	B.	Description of CCTL-DYSP	53
	C.	Listing of CCTL-DYSP	55
	D.	The Input Data; How to Run CCTL-DYSP	78
		1. Title 2. INLIST 3. PARM 4. DTCTR 5. Print-Plot Data 6. Sample Input Data Set	78 78 79 80 81 82
ACF	ONZ	WLEDGMENTS	84
REF	ER	ENCES	85

LIST OF FIGURES

<u>No</u> .	<u>Title</u>	Page
1.	Schematic Description of CCTL Loop	11
2.	CCTL Schematics for Simulation Program	11
3.	Transient Hydrogen Concentrations at Node 6, End of Pipe 49, in Detector 1, Resulting from a Steam Injection of 0.015 lb/sec for 5 sec from Injector I4 at Node 16	29
4.	Transient Hydrogen Concentrations at Nodes 16 and 23, End of Pipe 47, in Detector 3, Resulting from a Steam Injection of 0.015 lb/sec for 5 sec from Injector I4 at Node 16	30
5.	Transient Concentrations of Reaction Products Resulting from Steam Injection of 0.015 lb/sec for 5 sec from Injector I4 at Node 16	31
6.	Oxygen Concentration at Node 6 as Monitored by Oxygen Detector No. 2 Resulting from Steam Injection of 0.015 lb/sec for 5 sec at Injector I4	31
7.	Transient Hydrogen Concentrations at Nodes 16 and 23, End of Pipe 47, in Detector 3, Resulting from a Steam Injection of 0.001 lb/sec for 70 sec at Injector I4 and Node 16; Sodium Flow Rate of 800 gal/min at 940°F (504°C), without Cold Trapping	32
8.	Transient Concentrations of Reaction Products Resulting from a Steam Injection of 0.001 lb/sec for 70 sec at Injector I4; Sodium Flow Rate of 800 gal/min at 940°F (504°C), without Cold Trapping	33
9.	Response of Hydrogen Detectors to a Steam Injection of 0.001 lb/sec for 70 sec at Injector I4; Sodium Flow Rate of 800 gal/min at 940°F (504°C), without Cold Trapping	33
10.	Transient Hydrogen Concentrations at Nodes 1, 16, and 27 Resulting from a Steam Injection of 0.001 lb/sec for 70 sec at Injector I4; Sodium Flow Rate of 800 gal/min at 940°F (504°C), without Cold Trapping	34
11,	Response of Hydrogen Detector No. 1 at Different Sodium Flow Rates, to a Steam Injection of 0.001 lb/sec for 70 sec from Injector I4	34
12.	Response of Hydrogen Detector No. 3 to a Steam Injection of 0.001 lb/sec for 70 sec at Injector I4, during Sodium Flow at 300 gpm	35
13.	Response of Hydrogen Detector No. 3 to a Steam Injection of 0.001 lb/sec for 70 sec at Injector I4, during Sodium Flow at	
	465 gpm	35

LIST OF FIGURES

$\frac{\text{No.}}{}$	Title	Page
14.	Response of Hydrogen Detector No. 3 to a Steam Injection of 0.001 lb/sec for 70 sec at Injector I4, during Sodium Flow at 630 gpm	36
15.	Response of Hydrogen Detector No. 3 to a Steam Injection of 0.001 lb/sec for 70 sec at Injector I4, during Sodium Flow at 800 gpm	36
16.	Transient Hydrogen Concentration in a Tightly Coupled Loop at Pump Node 1 Resulting from a Steam Injection of 0.015 lb/sec for 5 sec into Sodium at 800 gpm and 940°F (504°C), at Injector I4	37
17.	Transient Hydrogen Concentrations in a Tightly Coupled Loop Resulting from a Steam Injection of 0.015 lb/sec for 5 sec at Injector I4, at 800 gpm and 940°F (504°C)	38
18.	Response of Hydrogen Detectors in a Tightly Coupled Loop Resulting from a Steam Injection of 0.015 lb/sec for 5 sec at Injector I4	38
19.	Transient Hydrogen Concentrations in a Tightly Coupled Loop Resulting from a Steam Injection of 0.015 lb/sec for 5 sec at Injector I4	39
20.	Transient Concentrations of Reaction Products in a Tightly Coupled Loop Resulting from a Steam Injection of 0.015 lb/sec for 5 sec at Injector I4	39
21.	Effect of Cold-trap Operation on Hydrogen Concentration in the Pump Segment	41
22.	Effect of Cold-trap Operation on Hydrogen Concentration in the CCTL Vessel	41
23.	Effect of Cold-trap Operation on Hydrogen Detector Monitoring the Steam-generator Outlet.	41
24.	Effect of Cold-trap Operation on Na_2O Concentration in the CCTL Vessel	41
25.	Change in Cover-gas Hydrogen Concentration When Hydrogen-disengagement Half-life is Reduced by a Factor of 1000	42
26.	Response of Hydrogen Detector No. 3 to a Steam Injection of 0.01 lb/sec for 5 sec from Two Different Injectors	43
27.	Transient Hydrogen Concentrations Resulting from Steam Injection of 0.01 lb/sec for 5 sec from Two Different Injectors	43

LIST OF FIGURES

<u>No</u> .	Title	Page
28.	Effect of Cold-trap Operation on Na ₂ O Concentration in CCTL Vessel	44
29.	Changes in Cover-gas Hydrogen Concentrations When Hydrogen-disengagement Half-life Is Reduced by a Factor of 1000	45
B.1.	Simplified Schematic Flowchart of CCTL-DYSP	53

LIST OF TABLES

No.	Title	Page
I.	Description of CCTL Experiment by Segments	23
II.	Initial Concentration of Reaction Products in Different Segments of CCTL	24
III.	Leak Distribution to Various Reactions and Reaction Products	25
IV.	Some Constant Parameters of the System	25
V.	Flow Distribution in CCTL	25
VI.	Water-leak Description for Experiment 1 Run 24	26
VII.	Description of Detector Connections for Experiment 1 Run 24	26

A KINETIC MODEL OF SODIUM-WATER REACTION APPLIED TO DYNAMIC SIMULATION OF LEAK DETECTION IN THE CORE COMPONENTS TEST LOOP

by

D. Saphier

ABSTRACT

A detailed model for the CCTL steam-generator leakdetection simulation was developed to predict the hydrogenand oxygen-detector response during a series of experiments to be performed at ANL. The detailed kinetic equations for the sodium-water interaction are given, as well as the assumptions made in assessing the various reactivity rates and hydrogengas migration in the sodium toward a free surface in contact with the cover gas. A dynamic model was developed describing concentration changes as a result of primary and secondary sodium reactions, sodium flow through the system piping, mixing processes in various plenum elements, cold-trap operation, cover-gas pressure changes, and waterleaks. A computer program CCTL-DYSP has been written in which the dynamic model was simulated to obtain the concentration of the different reaction products as functions of time for any segment of the CCTL system. A generalized approach was used in the modeling and programming procedures, so that only the input data have to be changed in order to analyze different experiments and different system configurations. With minor changes, the computer program can be adapted to simulate leak detection in the CRBR. Some representative results are included in the report, and qualitatively they are in agreement with similar results published elsewhere. Some experimental results also became available recently, and they are in good agreement with the simulated concentrations.

I. INTRODUCTION

The hazard to LMFBR steam generators from small water leaks has long been recognized and has been the subject of several theoretical and experimental studies. Large water leaks in a superheater or evaporator will lead to a spontaneous violent reaction and to subsequent partial or complete destruction of the steam generator. Small leaks, if permitted to continue during a period sufficiently long, will produce corrosive agents that cause destructive

wastage of the steam-generator tubing and finally result in "secondary" large leaks with extensive damage. It is, therefore, of utmost importance to detect the small leaks and their location so that the plant can be shut down before significant damage occurs.

Accordingly, an experimental leak-detection program¹ is underway in the Argonne Core Components Test Loop (CCTL) to evaluate methods for small-leak detection. The purpose of this experimental program is to evaluate the most efficient means for detecting water-to-sodium leaks in the range of 10⁻⁷-10⁻³ lb/sec and to gather enough experimental data on the leak-detection methods so that they can be applied to the Clinch River Breeder Reactor (CRBR). A series of experiments, as described in Ref. 1, to simulate water leaks in the CRBR heat exchangers will be performed. These experiments will be carried out under different flow rates, sodium temperatures, leak rates, and leak positions.

The purpose of the present study is to develop a mathematical model for the CCTL leak-detection experiment, and to set up a simulation program capable of solving the model equations in order that the leak-detector response can be predicted with reasonable accuracy. The modeling and the program are set up in a general way so that the CCTL experiment is a particular case. The computer program is modular and with minor changes can be applied to the simulation of other systems having water leaks into a sodium loop.

Several investigators^{1,6,8,10,12} have formulated general relationships between the size of the water leak and the quantity of hydrogen to be found in sodium after steady-state conditions are established. However, these relationships are usually system-dependent. In contrast, the mathematical model for the CCTL leak-detection experiment was developed from basic principles of conservation and the kinetic equations of the chemical reactions. Where certain basic parameters, such as reaction rates and hydrogen-gas disengagement rates, were not well known, reasonable assumptions were introduced. These assumptions can later be checked and improved by appropriate experiments. With this approach, the simulation program is rendered systemindependent and can easily be expanded to simulate leak detection in the CRBRP or other sodium systems.

II. THE CCTL LEAK-DETECTION EXPERIMENTAL SETUP

The Core Components Test Loop (CCTL) as well as the leak-detection experimental program are described in Ref. 1. Briefly, the CCTL is a large isothermal sodium loop, as is shown schematically in Fig. 1. The sodium is circulated through the main loop by a mechanical pump having a capacity of 800 gpm. The major component is a large sodium tank within which a simulated module of an CRBRP steam generator is placed. The water and steam pipes are simulated by solid stainless steel rods of the same diameter as the actual pipe. Water leaks are simulated by steam injections made directly into the module.

Fig. 1. Schematic Description of CCTL Loop

At several points in the system, sample lines direct a small fraction of the flow to various types of hydrogen and oxygen detectors. Among others,

Fig. 2. CCTL Schematics for Simulation Program

in-sodium hydrogen-diffusion, cover-gas hydrogen-diffusion, and electrochemical-oxygen meters are used. A bypass flow also passes to a purifying system, a cold trap, in which the impurities are removed from the sodium by precipitation. The bypass flows are governed by a series of valves and EM pumps, as shown in Fig. 1.

A schematic diagram of the CCTL leak-detection experiment, presenting features of importance to the mathematical modeling, is shown in Fig. 2. The CCTL system is divided into segments, each being considered as a lumped-parameter node. Two basic types of segments are used: (1) a mixing plenum, in which ideal mixing is assumed; and (2) pipes in which a pure delay and secondary reactions are assumed.

The steam-generator segments, nodes 6-22, are mixing-plenum segments

each having two baffle plates as a physical boundary. The flow between the segments is forced around the simulated tubes and the periphery of the baffle plate so that the total mixing is a good assumption for these segments. Steam injection points are designated as II-I8.

Nodes 25-27 are the CCTL vessel segments and contain large volumes of sodium. Node 1 (the pump) and node 27 (the upper vessel section) are in contact with the cover gas, and hydrogen can leave sodium through these segments.

Node 42 is the cold trap where hydrogen and oxygen are removed from the system by cooling and precipitation.

In Fig. 2, detectors are connected to nodes 6, 23, and 25, and the covergas plenum; the other nodes depicted are pipe nodes.

The total flow through the system as it leaves the pump is designated as WS; constant flow is assumed. There is a small sodium bypass flow WEX from node 3 to node 22. Flow from node 7 to node 6 is equal to bypass flow WT1 to the detectors connected to pipe node 49. Other flows leaving the main flow are WT3 and WT4, detector flows, and WCT, the cold-trap flow. All bypass flows to the detectors return to the system through upper sodium node 27 in the CCTL vessel. In the version of the program given in Appendix C, up to 50 segments having sodium flow and sodium-water reactions can be simulated.

The <u>CCTL DY</u>namic <u>Simulation Program</u> (CCTL-DYSP) is based on the above schematic description of the system. The computer code is described in Appendix B. In the program, a mass and concentration balance for each segment shown in Fig. 2 is performed, using the kinetic and the dynamic equations developed in Secs. III and IV.

Simulation of slow transients must include the influence of cold trapping on the hydrogen and oxygen concentration in the system. Details on cold-trap dynamics appear in Sec. V.

Finally, the detector response is simulated by accounting for the hydrogen and oxygen diffusion through the detectors, and the appropriate time delays in the instrumentation piping.

III. THE KINETICS OF SODIUM-WATER INTERACTIONS

A. The Sodium-Water Reactions

When physical contact is made between sodium and water, with an excess of water, a spontaneous violent reaction occurs, producing sodium hydroxide and hydrogen:

$$Na + H_2O \rightarrow NaOH + \frac{1}{2}H_2(g). \tag{1}$$

However, under small-leak conditions prevailing in steam generators, the ratio of sodium to water is of the order of 10^6 and additional reactions take place:

$$2Na + H_2O \rightarrow NaOH + NaH; \tag{2}$$

$$4Na + H_2O \rightarrow 2NaH + Na_2O; \tag{3}$$

$$2Na + H_2O \rightarrow Na_2O + H_2.$$
 (4)

The relative fraction of water participating in each of these reactions is dependent on the quantity of water introduced by the leak, the sodium temperature, and the sodium pressure. However, no numerical values were reported in the literature as to the quantity of water going into any of the four above reactions.

Therefore, in the present study, it was assumed that the above reactions are instantaneous and the fraction of water associated with each reaction is K1, K2, K3, and K4, respectively, and that

$$K_1 + K_2 + K_3 + K_4 = 1.$$
 (5)

Accordingly, when Q moles of water leak into sodium, four reaction products are generated with the following distribution:

$$Q(0.5 K_1 + K_4)$$
 moles of H_2 ; (6)

$$Q(K_1 + K_2)$$
 moles of NaOH; (7)

$$Q(K_1 + 2K_3) \text{ moles of NaH};$$
 (8)

$$Q(K_3 + K_4) \text{ moles of Na}_2O.$$
 (9)

These products are predominantly dissolved and entrained by the rapid turbulent sodium flow. However, a fraction of the hydrogen is entrained as bubbles rather than dissolved in the liquid sodium. These bubbles will either diffuse and dissolve in the fluid, or escape into the cover gas.

Some of the products formed in the primary reactions are unstable at the temperatures prevailing in a steam generator or in the CCTL. The NaH and NaOH are dissociated according to the equations

$$Na + NaOH \rightarrow Na_2O + \frac{1}{2}H_2 \tag{10}$$

and

$$NaH \neq Na + \frac{1}{2}H_2. \tag{11}$$

Thus, it is apparent that the ultimate products of the sodium-water reaction are predominantly hydrogen gas and sodium oxide, which can be detected by hydrogen and oxygen meters.

B. Hydrogen Equilibrium Concentration in Sodium

In systems under equilibrium conditions, some of the hydrogen dissolved in sodium escapes to the cover gas and is found to have a partial pressure P_H , independent of the cover gas pressure (usually argon). The equilibrium relation between the hydrogen in the cover gas and hydrogen in sodium (either as hydrogen or as NaH) is governed by the Sieverts' law: 8

$$C_{H} = K_{S} P_{H}^{1/2},$$
 (12)

where $C_{\mathbf{H}}$ is the hydrogen concentration in sodium (in mol/lb) and $K_{\mathbf{S}}$ is Sieverts' constant given by

$$K_S = 2.255 \times 10^{-6} \exp(1.9733 - 276.77/T_K),$$
 (13)

where K_S is in mol/lb-Torr^{1/2}, T_K is the temperature in degrees Kelvin, and P_H is the hydrogen partial pressure, in Torr (i.e., mm Hg).

C. Decomposition Rate of Sodium Hydroxide

In reactions 1 and 2, sodium hydroxide (NaOH) is formed. This product is unstable under normal reactor operating conditions and decomposes according to Eq. 10. In his experiments, which involved heating sodium with NaOD* at 500°C under vacuum, Fischer⁴ found that the reaction is of the first order according to

$$Rt = \ln[C_0/(C_0 - C)] \tag{14}$$

where C_0 is the initial concentration, C is the concentration at time t, and R is the rate constant.

From the linear portion of the experimental curve, $Fischer^4$ determined the rate constant to be

$$R = 0.0045 \, \text{min}^{-1}$$

or in other terms, the half-life $\tau_{1/2}$ of NaOH is

^{*}D denotes deuterium

 $\tau_{1/2} = 150 \text{ min.}$

Therefore, $K_{\text{NaOH}} = 7.5 \times 10^{-5} \text{ sec}^{-1}$ was used in this study.

The hydroxide decomposition in sodium has also been treated by several authors, 4,7,10 but none gave the temperature dependence of the reaction rate. In the present study, it was therefore assumed that the reaction rate is a constant.

D. Dissociation Pressure of Sodium Hydride

The partial pressure of hydrogen over NaH has been well established for a wide range of temperatures 1,4,9 and is given by

$$P_{dis} = \exp(26.71 - 14046/T_K),$$
 (15)

where $P_{\rm dis}$ is the dissociation pressure, in mm Hg, and $T_{\rm K}$ is the temperature, in degrees Kelvin. Banus et al. 11 have shown that Eq. 15 is correct, even in dilute sodium solutions; therefore the equation was used in the present study.

E. Hydrogen Absorption by Sodium

Under vacuum conditions at elevated temperatures, all the sodium hydride will be decomposed. However, hydrogen also will be absorbed by sodium if it is available in significant quantities in a cover-gas plenum over the sodium. Experiments by Longton³ reveal that if hydrogen is admitted over sodium at a pressure greater than the dissociation pressure, sodium hydride will form until the pressure decreases to a value equal to the dissociation pressure. The rate of absorption in terms of a pressure change $\Delta P_{\mbox{\sc H}}$ is given by a simple parabolic law

$$\Delta P_{H} = K(P_{H} - P_{dis})^{2}, \tag{16}$$

where P_H is the actual pressure in the cover gas, P_{dis} is the dissociation pressure, Δ indicates change in the variable, and K is the rate constant, which is temperature-dependent according to the Arrhenius equation

$$K = A \exp(-Q/RT). \tag{17}$$

From the semilogarithmic plots given by Longton, 3 A and Q/R have been determined to be

$$A = 1.42 \times 10^9 \text{ sec}^{-1}$$
 and $Q/R = 11795^{\circ}K$.

Note, however, that at the temperatures of interest in the steam generator, the dissociation pressure of NaH is high[for 940°F (504°C), $P_{\rm dis} = 5670$ mm-Hg]; hence, hydrogen from the cover-gas plenum is not expected to be absorbed in sodium.

F. Decomposition Rate of Sodium Hydride

Naud⁶ has reported some experiments to determine NaH dissociation rates. He reported large experimental errors. However, since these are the only rate constants available, they will be used in the present study. The values reported by Naud are

$$K(310^{\circ}C) = 0.05 \text{ min}^{-1}$$

and

$$K(280^{\circ}C) = 0.035 \text{ min}^{-1}$$
.

On substituting these values into Eq. 17, we obtain the following expression for the rate of NaH dissociation:

$$R_2 = 0.597 \exp(-3883/T_K).$$
 (18)

If, however, the partial pressure of hydrogen in the cover gas is equal to or greater than the NaH dissociation pressure, there will be no NaH dissociation. It is, therefore, assumed that both processes, i.e., NaH dissociation, and hydrogen absorption by the sodium and formation of sodium hydride, are governed by Eq. 16 and the combined rate constant is given by

$$K_{NaH} = R_2 \left(\frac{P_{dis} - P_H}{P_{dis}} \right)^2. \tag{19}$$

G. Kinetic Equations

In Secs. A-F the various chemical reactions occurring when a small quantity of water is introduced into sodium were described. The dissociation equations of some of the products and their reaction rates were also given.

It is now possible to write the kinetic equations for a volume of sodium into which a leak of Q lb/sec of water has been injected. These equations give the change in concentration of the reaction products as a function of time:

$$\dot{C}_{Nah} = \frac{d}{dt}C_{NaH} = (K_2 + 2K_3)\frac{Q}{M} - K_{NaH}C_{NaH},$$
 (20)

$$\dot{C}_{NaOH} = \frac{d}{dt} C_{NaOH} = (K_1 + K_2) \frac{Q}{M} - K_{NaOH} C_{NaOH},$$
 (21)

$$\dot{C}_{Na_2O} = \frac{d}{dt}C_{Na_2O} = (K_3 + K_4)\frac{Q}{M} + K_{NaOH}C_{NaOH},$$
 (22)

and

$$\dot{C}_{H_2} = \frac{d}{dt}C_{H_2} = (0.5K_1 + K_4)\frac{Q}{M} + 0.5(K_{NaH}C_{NaH} + K_{NaOH}C_{NaOH}), \tag{23}$$

where C is the concentration (in mol/lb) of the different products, M is the sodium mass (in lb) in the calculated segment, $K_{\rm NaH}$ is given by Eq. 19, $K_{\rm NaOH}$ is a constant (in sec⁻¹), and Q is the leak rate (in mol/sec).

These equations are used in subsequent sections to develop the dynamic equations used in the simulation study.

IV. DYNAMICS OF SODIUM-WATER REACTION-PRODUCT PROPAGATION

The dynamic equations developed in this section are based mainly on mass balance applied to each segment and each product of the CCTL system. The equations are written in a general way so that the program can be adopted to other systems mainly by changing the input data. Some additional changes may be required due to differences in the physical-loop configurations.

A. Sodium Flow and Concentration Changes

The CCTL system is subdivided into several segment nodes as shown in Fig. 2. In a generalized node, the following processes occur:

- 1. Primary reactions resulting from water leak.
- 2. Secondary reactions.
- 3. Sodium flowing into and out of the segment.
- 4. Hydrogen gas entering or leaving the node.
- 5. Precipitation of reaction products.

The appropriate balance equations are

$$\frac{d}{dt}C_{1} = \frac{1}{M} \sum_{j} (W_{ij}C_{1ij} - W_{xj}C_{1}) + \dot{C}_{NaH}, \qquad (24)$$

$$\frac{d}{dt}C_{2} = \frac{1}{M} \sum_{i} (W_{ij}C_{2ij} - W_{xj}C_{2}) + \dot{C}_{NaOH}, \qquad (25)$$

$$\frac{d}{dt}C_{3} = \frac{1}{M} \sum_{j} (W_{ij}C_{3ij} - W_{xj}C_{3}) + \dot{C}_{Na_{2}O}, \qquad (26)$$

and

$$\frac{d}{dt}C_4 = \frac{1}{M} \sum_{j} (W_{ij}C_{4ij} - W_{xj}C_4) + \dot{C}_{H_2} - W_H/M, \qquad (27)$$

where

j = 1, ..., j for all inlet and outlet flows,

i = inlet,

x = exit,

C₁ = concentration of NaH (in mol/lb) at any particular node,

C₂ = concentration of NaOH (in mol/lb) at any particular node,

C₃ = concentration of Na₂O (in mol/lb) at any particular node,

C₄ = concentration of hydrogen (in mol/lb) at any particular node,

W; = node inlet flow (in lb/sec) at the jth inlet,

Wxi = node exit flow (in lb/sec) at the jth outlet,

M = total mass of sodium (in pounds) in the node,

W_H = net hydrogen gas (in mol/sec) leaving (or entering) the node,

and

 $\dot{C}_{NaH},\,\dot{C}_{NaOH},\,\dot{C}_{Na_2O},$ and \dot{C}_{H_2} are time derivatives given by Eqs. 20, 21, 22, and 23, respectively.

B. Hydrogen Partial Pressure in the Cover Gas

In the sodium loop of an LMFBR steam generator, as well as in the CCTL leak-detection experiment, the sodium may have a free surface with an inert cover gas in several places. Under leak conditions, hydrogen generated in the sodium will escape into the cover gas. If, for some reason, a high concentration of hydrogen or steam exists in the cover gas, it will be partially absorbed in the sodium flow.

In the CCTL experiment, the coolant contacts the cover gas in two places: the pump and the CCTL vessel. The amount of gas (in mol/sec) that can leave these nodes is $W_{\mbox{HP}}$ and $W_{\mbox{HC}}$ for the pump and the CCTL vessel, respectively. All cover-gas plena are connected through the expansion tank, and equal pressure is assumed to exist in each plenum.

The hydrogen partial gas pressure \mathbf{P}_H is calculated from the ideal gas law PV = nRT:

$$W_{H} = W_{HP} + W_{HC}; \tag{28}$$

$$\frac{dP_{H}}{dt} = 554.4W_{H}T_{p\ell}/V_{p\ell}, \qquad (29)$$

where P_H is in mm Hg, W_H is in mol/sec; $T_{p\ell}$ is the temperature (in degrees Rankine), and $V_{p\ell}$ is the total plenum volume (in cubic feet).

C. Hydrogen-gas Migration

The quantity of hydrogen gas produced at the leak site is given by Eq. 6. This hydrogen can be in two forms; it can be either dissolved in the sodium or in the form of tiny bubbles. No information was found in the literature on whether any hydrogen bubbles are formed and what the fraction or sizes of these bubbles are. From the experiments performed so far there is, however, a strong indication that no bubbles are formed at the high temperatures prevailing in the heat exchanger, but some of the hydrogen might be produced in bubbles under low-temperature condition.

The conditions under which hydrogen bubbles are formed and their subsequent behavior in the system are the subject of ongoing theoretical and experimental investigations. In this study, it is assumed that if free hydrogen is formed during reactions at the leak site, it will be completely dissolved in the sodium. This assumption is well justified above 600°F (316°C) and will probably be increasingly erroneous as the temperature of the sodium in the CCTL experiment is lowered.

A model for the possible migration or diffusion of the dissolved hydrogen and its subsequent escape into the cover gas has been developed based on the following assumptions:

- 1. Dissolved hydrogen will diffuse from the sodium into the cover gas only when the partial pressure in the cover gas is less than the value governed by Sieverts' law (Eq. 12).
- 2. Hydrogen from the cover gas will enter the sodium only if the partial pressure of the cover gas is higher than the NaH dissociation pressure.
- 3. Independent hydrogen-gas migration occur only in parts of the system where very slow flow exists; otherwise the gas will be entrained in the sodium flow.
 - 4. The gas will migrate only in the upward direction.
- 5. The rate at which the hydrogen migrates to the cover gas is determined by the difference between hydrogen concentration and the equilibrium value according to Seiverts' law:

$$W_{H} = R_{1}(C_{H} - C_{HS})M \text{ for } C_{H} > C_{HS}.$$
 (30)

6. The rate constant R_1 , which governs the hydrogen disengagement rate, is assumed to be such that, if zero partial pressure of hydrogen exists in the cover gas, it will take $\tau_{1/2}$ for half the hydrogen necessary to establish equilibrium to leave the sodium node:

$$R_1 = (\ln 2)/\tau_{1/2} = 0.693/\tau_{1/2}. \tag{31}$$

D. Dynamics of a Pipe Segment

Dynamic equations for a pipe containing M pounds of sodium flowing at W lb/sec are determined by the transit time τ , which is given by

$$\tau = M/W. \tag{32}$$

The concentration of any of the reaction products at time $t - \tau$ is given by

$$C' = C(t - \tau). \tag{33}$$

Hence, C' is the concentration of a reaction product τ seconds before it reaches the pipe exit.

There are no leaks in these pipe segments; therefore, only secondary reactions take place. The change in C', which was confined to the pipe segment during time τ , is obtained by the following single-step integration process:

$$\Delta C_1 = -K_{NaH}C_1^{\dagger}\tau, \qquad (34)$$

$$\Delta C_2 = -K_{NaOH}C_2^{\dagger}\tau, \qquad (35)$$

$$\Delta C_3 = K_{\text{NaOH}} C_2^{\prime} \tau, \qquad (36)$$

and

$$\Delta C_4 = 0.5(K_{NaH}C_1' + K_{NaOH}C_2')\tau.$$
 (37)

This is a coarse integration process and can be justified only because the secondary reaction-rate constants are very small.

The concentration of any of the reaction products at the exit of the pipe at time $\,t\,$ is given by

$$C(t) = C' + \Delta C. \tag{38}$$

V. THE COLD TRAP

Impurities are removed from the sodium by cooling it to temperatures at which the solubility of some of the reaction products is reduced considerably.

A small stream of the sodium is bypassed through a special heat exchanger called a cold trap. If the concentration of the impurities exceeds the amount that can be dissolved in sodium at the cold-trap temperature, the excess will precipitate.

A. Cold-trap Efficiency

Theoretically, the impurity concentration in sodium at the cold-trap outlet should be equal to its solubility at the cold-trap temperature. However, the operating characteristics of the cold trap change with time and flow rate, with consequent changes in its static efficiency, which is given by 12

$$\beta = \frac{C_i - C_x}{C_i - C_{sat}},\tag{39}$$

where C_i and C_x are the impurity concentrations at the inlet and outlet, and C_{sat} is the saturation concentration for the cold-trap temperature.

B. Cold-trap Dynamics

In a dynamic system, the widely accepted concept of the static efficiency β cannot be used. Instead, a dynamic efficiency is defined by

$$M\frac{dC}{dt} = W_{ct}(C_{in} - C) - \beta_d(C_{in} - C_{sat}), \qquad (40)$$

where C is the average outlet concentration (in mol/lb), and β_d is the dynamic efficiency, given by

$$\beta_{d} = f(W_{ct}, T_{ct}), \tag{41}$$

where W_{ct} is flow rate through the cold trap (in lb/sec), and M is the sodium content in the cold trap (in pounds). The exact dependence of β_d on the flow rate and other factors is presently unknown.

C. Solubility of Reaction Products

Available data on the solubility of hydrogen and oxygen in sodium have been summarized by Rodgers and Dutina.⁵ Their recommended values as function of temperature were used in this study.

For NaH,
$$C_{1sat} = \exp(13.97 - 6631.4/T_K)$$
. (42)

For Na₂O, C_{3sat} =
$$\exp(16.131 - 6493.3/T_K)$$
. (43)

The concentrations are given in ppm, and \mathbf{T}_{K} is the cold-trap temperature in degrees Kelvin.

VI. DETECTORS

The results of the CCTL leak-detection experiments will be available through reading and interpreting outputs from the hydrogen and oxygen detectors. Outputs from the hydrogen detectors will be proportional to the NaH and hydrogen concentrations, and outputs from the oxygen detectors will be proportional to the Na_2O concentration.

To predict the detector outputs, the simulation employs three parameters that characterize the detectors: (1) the time $\log \tau$, which is the time for the tiny stream of sodium to reach the detecting apparatus; (2) the diffusion time constant θ of the detector, i.e., the time for hydrogen or oxygen to diffuse through the membrane until equilibrium is achieved between the measured sample stream and the detector interior; and (3) the proportionality or calibration constant of the detector.

The detector transfer function is given by

$$\frac{A}{C} = \frac{K_d e^{-S\tau}}{1 + S\theta},\tag{44}$$

where A is the detector reading, C is the actual concentration, S is the Laplace-transform operator, and $K_{\mbox{\scriptsize d}}$ is the proportionality constant.

VII. A TYPICAL DATA SET TO BE USED WITH THE SIMULATION

A data set that describes the CCTL system, the conditions at which the particular experiment is performed, and some initial conditions is given in Tables I-VII. Except for the explanatory titles, the tables are reproductions of CCTL-DYSP printouts of initial data used in a CCTL leak-detection-experiment simulation.

Table I presents data describing the system segments, length, cross section, area, the total mass of sodium in each segment, and the flow through each segment. Table II shows the initial conditions in each segment. Table III gives some reaction parameters and how much of each reaction product is generated per mole of water leak. Table IV gives some system constants, and Table V gives the input flow values through various passages. Table VI shows the leak experiment for a particular run, and Table VII describes the detectors.

TABLE I. Description of CCTL Experiment by Segments.

TYPE 0, not simulated; TYPE 1, mixing plenum;

TYPE 2, a pipe segment; TYPE 3, plenum with cover gas; TYPE 4, segment with multiple entry; TYPE 5, segment with cover gas and multiple entry.

			*******	RUN # 24:	CCTLP LEAK	DETECTION
;	S E G	M			ETERS	
			LENGTH	CROSS-AREA	MASS	FLOW
			(ft)	(ft ²)	(16)	(lb/sec)
1	*	3	1.000E 00	1.069E 00	5.583E 01	9.309E U1
2	*	5	4.090E 01	9.893E-02	2.113E 02	9.309E 01
3	*	1	1.000E 00	3.395t-01	1.773E 01	9.309E 01
4	*	5	1.000E 01	9.693E-05	5.166E 01	9.297E U1
5	*	1	1.000E 00	2.127E-01	1.1116 01	9.297E 01
6	*	1	1.000E 00	1.490E 00	7.781E 01	5.818E-U1
7	*	1	2.775E-01	3.240E-01	4.095E 00	9.297E U1
8	*	1	4.171E-01	3.24UE-U1	7.057E 00	9.239E U1
9	*	1	4.021E-01	3.240E-01	6.803E 00	4.239E 01
10	*	1	4.588E-01	3.24UE-01	7.763E 00	9.239E 01
11	*	1	7.188E-01	3.240E-U1	1.318E 01	9.239E U1
12	*	1	8.546E-01	3.240E-01	1.446E 01	9.239E 01
13	*	1	7.788E-01	3.240E-01	1.318E 01	4.239F 01
14	*	1	7.221E-01	3.240E-01	1.5558 01	9.259E U1
15	*	1	7.2216-01	3.240L-01	1.222E 01	4.239E 01
16	*	1	7.788E-01	3.240E-01	1.318E 01	9.239E 01
17	*	1	8.546E-01	3.240E-01	1.446E 01	9.239E 01
18	*	1	7.788E-01	3.240E-01	1.318E 01	9.239E U1
19	*	1	4.588E-01	3.240E-01	7.7631 00	4.239E 01
20	*	1	4.021E-01	3.240E-01	6.803E 00	9.234E 01
21	*	1	4.171E-01	3.240E-01	7.0578 00	7.239E 01
22	*	4	3.889E-01	3.240E-01	6.580E 00	9.251E 01
23	*	1	1.000E 00	2.127E-01	1.111E 01	9.251E 01
24	*	5	2.890E 00	9.893E-02	1.495E 01	9.192E U1
25	*	1	1.000E UU	4.030E 00	2.1054 02	9.192E 01
26	*	1	2.083E 00	6.335E 00	0.0911 02	4.140E 01
27	*	5	7.500E 00	0.445£ 00	2.524E 03	9.202E U1
28	*	2	1.900E 01	1.5256-01	1.514E 02	9.202E 01
29	*	4	8.000E-01	1.525E-01	6.373L 0U	9.309E 01
30	*	2	3.100E 01	1.5256-01	2.47UE 02	7.309E 01
31	*	0	1.000E 00	0.0	0.0	0.0
32	*	0	1.000E 00	0.0	0.0	0.0
33	*	0	1.000E 00	0.0	0.0	0.0
34	*	0	1.000E 00	0.0	0.0	J • 0
35	*	U	1.0000 00	0.0	0.0	U . O
36	*	0	1.000E 00	0.0	0.0	0.0
37	*	0	1.000E 00	0.0	0.0	0.0
38	*	0	1.000E 00	0.0	0.0	0.0
39	*	0	1.000E 00	0.0	0.0	0.0
40	*	0	1.00UE 00	0.0	0.0	J.0
41	*	5	5.800F 01	2.480E-03	3.626E DU	4.0548-01
42	*	1	1.000E 00	3.276E 00	1.7112 02	4.654E=01
43	*	5	1.600E 01	2.480E-03	2.072E 00	4.654E-01
44	*	0	1.600E 01	1.796E-01	1.5016 02	0.0
45	*	0	0.0	0.0	0.0	0.0
46	*	0	0.0	0.0	0.0	0.0
47	*	2	1.858E 01	2.480E-03	2.407E 00	5.818E-01
48	*	2	3.687E 01	2.480E-03	7.182E 00	5.818E-01
49	*	2	4.267E 01	2.480E-03	5.526E 00	5.818E-01
50	*	5	4.226E 01	2.480E-03	1.100E 01	5.818E-01
2000 St						

TABLE II. Initial Concentration of Reaction Products in Different Segments of CCTL

			CONCENTRAT	ION, MOL/LB	
SEGM	TYPE	C1-NAH	CS-NAOH	C3-NA20	C4-H2
1 ;	* 3	1.418E-06	1.134E-08	2.561E-04	2.249E-06
	* 2	1.418E-06	1.134E-08	2.561E-04	2.249E-06
	* 1	1.418E-06	1.134E-08	2.561E-04	2.249E-06
	* 2	1.418E-06	1.134E-08	2.561E-04	2.249E-06
5	* 1	1.418E-06	1.134E-08	2.561E-04	2.249E-06
	* 1	1.418E-06	1.134E-08	2.561E-04	2.249E-06
7 :	* 1	1.418E-06	1.134E-08	2.561E-04	2.249E-06
8	* 1	1.418E-06	1.134E-08	2.561E-04	2.249E-06
9	1	1.418E-06	1.134E-08	2.561E-04	2.249E-06
10	* 1	1.418E-06	1.134E-08	2.561E-04	2.249E-06
11	* 1	1.418E-06	1.134E-08	2.561L-04	2.249E-06
12	* 1	1.418E-06	1.134E-08	2.561E-04	2.249E-06
13	1	1.418E-06	1.134E-08	2.561E-04	2.249E-06
14	1	1.418E-06	1.134E-08	2.561E-04	2.249E-06
15	* 1	1.418E-06	1.134E-08	2.561E-04	2.249E-06
16	1	1.418E-06	1.134E-08	2.561E-04	2.249E-06
17	1	1.418E-06	1.134E-08	2.561E-04	2.249E-06
18	1	1.418E-06	1.134E-08	2.561E-04	2.249E-06
19	1	1.418E-06	1.134E-08	2.561E-04	2.249E-06
50 4	1	1.418E-06	1.134E-08	2.561E-04	2.249E-06
21 ,	1	1.418E-06	1.134E-08	2.561E-04	2.249E-06
55 4	4	1.418E-06	1.134E-08	2.561E-04	2.249E-06
53 ,	1	1.418E-06	1.134E-08	2.561E-04	2.249E-06
-	. 5	1.418E-06	1.134E-08	2.561E-04	2.249E-06
25	1	1.418E-06	1.134E-08	2.561E-04	2.249E-06
	1	1.418E-06	1.134E-08	2.561E-04	2.249E-06
27 1		1.418E-06	1.134E-08	2.561E-04	2.249E-06
28 ,	-	1.418E-06	1.134E-08	2.561E-04	2.249E-06
29		1.418E-06	1.134E-08	2.561E-04	2.249E-06
30	_	1.418E-06	1.134E-08	2.561E-04	2.249E-06
31 1		0.0	0.0	0.0	0.0
32 1		0.0	0.0	0.0	0.0
33 1	1,50	0.0	0.0	0.0	0.0
34 1	•	0.0	0.0	0.0	0.0
35 1	•	0.0	0.0	0.0	0.0
36 1		0.0	0.0	0.0	0.0
37 4		0.0	0.0	0.0	0.0
38		0.0	0.0	0.0	0.0
39 1		0.0	0.0	0.0	0.0
40 *	•	0.0	0.0	0.0	0.0
41 *	_	1.418E-06	1.134E-08	2.561E-04	2.249E-06
42 *	•	1.418E-06	1.134E-08	2.561E-04	2.249E-06
43 *	_	1.418E-06	1.134E-08	2.561E-04	2.249E-06
44 *		0.0	0.0	0.0	0.0
45 *	-	0.0	0.0	0.0	0.0
46 *		0.0	0.0	0.0	0.0
47 *	_	1.418E-06	1.134E-08	2.561E-04	2.249E-06
48 *	_	1.418E-06	1.134E-08	2.561E-04	2.249E-06
49 *	_	1.418E-06	1.134E-08	2.561E-04	2.249E-06
50 *	. 5	1.418E-06	1.134E-08	2.561E-04	2.249E-06

TABLE III. Leak Distribution to Various Reactions and Reaction Products

0.45	OF	THE	LEAK	GUES	ΤU	NA+H20=NA	он-	+1/2H2(G)
0.20	OF	THE	LEAK	GOES	TO	2NA+H2U=NA	OH-	HAH
0.25	UF	THE	LEAK	GOES	TU	4NA+H20=2N	IAH-	LNA50
0.10	OF	THE	LEAK	GOES	TÜ	2NA+H20=NA	20.	FH2
0.70	MOL	. OF	THE	LEAK	IS '	TRANSFORMED	TU	NAH
0.65	MOL	. OF	THE	LEAK	18	TRANSFURMED	TU	HUAN
0.35	MOL	. UF	THE I	LEAK	IS '	TRANSFORMED	TÛ	OSAN
0.32	MOL	. OF	THE	LEAK	IS.	TRANSFURMED	10	H2(G)

TABLE IV. Some Constant Parameters of the System

THE NAH DISSOCIATION PRESSURE IN MM-HG IS	3332.611
SODIUM TEMPERATURE IN (DEG-F)IS	900.00
SODIUM TEMPERATURE IN (DEG-K) IS	755.22
SODIUM DENSITY IN (LBS/CUF) IS	52.22
TOTAL WEIGHT OF SODIUM IN THE SYSTEM (LB)	4785.61
COVER GAS PLENUM VOLUME (CUF)	40.00
COLD TRAP DYNAMIC EFFICIENCY (1/SEC) IS	0.2449E-02
NAH SATURATION CONC. AT CULD TRAF (MUL/LB)	0.8542E-06
NAZO SATURATION CNC. AT CULD TRAP (MUL/LB)	0.40968-05
TOTAL TRANSIT TIME IN CCTL (SEC) IS	46.87
COLD TRAP TEMPERATURE IN (DEG-K) IS	388.56
SIEVERTS CONSTANT IN (MOL/(LB*TORR**-2))	U.1125E-02
PARTIAL HYDROGEN PRESSURE IN COVER GAS (MM-HG)	0.1
PARTIAL ARGON PRESSURE IN COVER GAS (MM-HG)	800

TABLE V. Flow Distribution in CCTL (see Fig. 2 for explanation)

TOTAL	SODIUM	FLUW	IN	(LBS/SEC) 1S	93.0872
				WCT	0.4654
				wl1	0.5818
				wT2	0.0
				WT3	0.5818
				wT4	0.0
				WEX	0.1164
				w A	92.9709
				w X	92.3891
				₩B	92.5054
				w C	91.9236
				WD	91.4582
				WE	92.6217
				WR	93.0872

TABLE VI. Water-leak Description for Experiment 1 Run 24

CCTL LEAK DETECTION SIMULATION. (.001 LB/SEC AT INJ#4, DUR=70SEC********* ************RUN # 15: LEAKAGE DATA FOR THIS CASE ARE: 25 FOR NODE SEGMENT # 19 17 12 15 16 THE LEAKAGE IN MUL/SEC IS 0.0 0.3776E 00 0.0 0.0 0.0 THE LEAK STARTS AT TIME -10.00 10.00 10.00 10.00 10.00 10.00 THE LEAK IS TERMINATED AT 80.00 80.00 80.00 15.00 80.00 80.00

TABLE VII. Description of Detector Connections for Experiment 1 Run 24

DETECTOR NO 1 OF TYPE 1 15 CONECTED TO NUDE 49 HAS A LAG UF 10.00SEC AND A DELAY OF14.00SEC DETECTOR NO 2 OF TYPE 2 IS CONECTED TO NODE 49 HAS A LAG UF 12.00SEC AND A DELAY OF15.00SEC DETECTOR NO 3 OF TYPE 1 IS CONECTED TO NODE 47 HAS A LAG OF 10.00SEC AND A DELAY OF14.00SEC DETECTOR NO 4 OF TYPE 3 IS CONECTED TO NUDE 27 HAS A LAG OF 1.00SEC AND A DELAY OF10.00SEC

Type I = Hydrogen Detector

Type 2 = Oxygen Detector

Type 3 = Hydrogen Detector in the Cover Gas

VIII. SUMMARY OF ASSUMPTIONS

- Reactions 1-4 are the only sodium-water reactions expected at the leak site.
- 2. As a result of a leak of 1 mol of water, the following reaction products will be generated instantaneously:
 - 0.7 mol of NaH
 - 0.65 mol of NaOH
 - 0.35 mol of Na₂O
 - 0.37 mol of H₂
- The only secondary reactions taking place in the system are NaOH and NaH dissociation, as given by Eqs. 10 and 11.
- 4. The half-life of NaOH is 150 min.
- 5. The NaH dissociation pressure is given by Eq. 15:

$$P_{dis} = \exp(26.71 - 14046/T_K).$$

- If the system is at steady state for a long time, the hydrogen pressure in the cover gas will be in equilibrium with the hydrogen concentration in the sodium according to Sieverts' law.
- 7. Changes in the cover-gas hydrogen partial pressure are the result of hydrogen leaving the sodium according to the Sieverts' law and because of bubble transport from the leak site. Bubble transport occurs only at low temperatures and is assumed to be zero at the temperatures considered in this study.
- 8. The NaH dissociation rate is given by

$$K_2 = 0.597 \exp(-3883/T_K) \left(\frac{P_{dis} - P_H}{P_{dis}}\right)^2$$

- 9. Ideal mixing is assumed in all plenum segments.
- 10. Hydrogen diffusion through the system walls is neglected.
- 11. The hydrogen and oxygen detectors are of the diffusion type and can be characterized by the transfer function given in Eq. 44:

$$\frac{A}{C} = \frac{K_d e^{-S\tau}}{1 + S\theta}.$$

12. Solubility of NaH in sodium is given by Eq. 42,

$$C_{NaH} = \exp(13.97 - 6631.4/T_K).$$

13. Solubility of Na₂O in sodium is given by Eq. 43,

$$C_{\text{Na}_2\text{O}} = \exp(16.131 - 6493.3/T_{\text{K}}).$$

- 14. Steady-state flow conditions prevail throughout the system; therefore, there is a constant sodium level in CCTL vessel and zero flow to the expansion tank.
- 15. The system temperature is constant; no heat transfer is accounted for.
- Pressure gradients throughout the flow path and their possible effects on reaction rates are neglected.

IX. SAMPLE CALCULATIONS

The following sample calculations are intended to demonstrate various output features of the program rather than to predict the results of a particular CCTL experiment.

A. Changes in Reaction-product Concentration as a Result of a Short, 0.075-lb Leak

A short leak of 0.015 lb/sec, starting at 10 sec after simulation startup and terminating at 15 sec, was generated to initiate a transient in the CCTL system. The injection point was I4 (in the middle of the steam-generator module). The conditions are basically similar to those given in Tables I-VII, except for the leak size. The simulation was run for 100 sec, a sufficient time for the major transients to be terminated.

Figure 3 shows the hydrogen concentration in sodium as a function of time (1) at the leak-injection site (node 16); (2) at the stagnant part of the steam generator (node 6) through which there is a small (5-gal/min) sampling-line flow; (3) at the end of the pipe leading to hydrogen detector No. 1; and (4) as given by the response of detector No. 1. The delays among the various nodes are clearly visible. The effect of mixing increases with distance from the injection node; therefore, the peaks observed during the transients are lower at the distant nodes.

Fig. 3. Transient Hydrogen Concentrations at Node 6, End of Pipe 49, in Detector 1, Resulting from a Steam Injection of 0.015 lb/sec for 5 sec from Injector I4 at Node 16 (See Fig. 2)

Figure 4 shows the hydrogen concentration (1) at the steam-generator outlet plenum (node 23); (2) at the end of sampling line 47 leading from node 23 to the hydrogen detector No. 3; and (3) as given by the response of detector No. 3. For comparitive purposes, the hydrogen concentration at the injection node is also shown.

Fig. 4. Transient Hydrogen Concentrations at Nodes 16 and 23, End of Pipe 47, in Detector 3, Resulting from a Steam Injection of 0.015 lb/sec for 5 sec from Injector I4 at Node 16 (See Fig. 2)

Figure 5 shows the concentration of the four reaction products at node 27, which is in contact with the cover gas. Apart from differences in concentrations, which are the results of the assumption on how the sodiumwater reaction products split, the transient forms of the four curves are identical.

Figure 6 shows the oxygen concentration at node 6, as monitored by oxygen detector No. 2.

B. Changes in Reaction-product Concentration as a Result of a 70-sec, 0.0001-lb/sec Leak

This run simulated a proposed CCTL leak-detection experiment with a sodium flow rate of 800 gal/min at 940°F (504°C). Steam at 0.001 lb/sec was introduced at Injector I4 (see Fig. 2) 10 sec after simulation startup. The leak was terminated at 80 sec, and simulation was continued up to 600 sec. The cold trap was not in operation in this experiment.

Fig. 5. Transient Concentrations of Reaction Products Resulting from Steam Injection of 0.015 lb/sec for 5 sec from Injector I4 at Node 16 (See Fig. 2)

Fig. 6. Oxygen Concentration at Node 6 as Monitored by Oxygen
Detector No. 2 Resulting from Steam Injection of 0.015 lb/
sec for 5 sec at Injector I4 (See Fig. 2)

Figure 7 shows the hydrogen concentration at the injection point (node 16), at node 23, at the end of pipe section 47, and at hydrogen detector No. 3. The delays in concentration changes among the various nodes are clearly seen.

Fig. 7. Transient Hydrogen Concentrations at Nodes 16 and 23, End of Pipe 47, in Detector 3, Resulting from a Steam Injection of 0.001 lb/sec for 70 sec at Injector I4 and Node 16 (See Fig. 2); Sodium Flow Rate of 800 gal/min at 940°F (504°C), without Cold Trapping

Figure 8 shows the concentrations of the four reaction products at node 27. A relatively fast decomposition of NaH at $940^{\circ}F$ ($504^{\circ}C$) can be observed from the figure.

Figure 9 shows the responses of two hydrogen detectors, one monitoring node 6 and the other monitoring node 23.

Figure 10 shows the hydrogen concentration at the injection node 16, the pump node 1, and the upper CCTL vessel node 27. Except for the time scale, these results are similar to those calculated by Pellow.¹²

C. Effect of Changing Flow Rate

As mentioned earlier, the CCTL test plan 1 includes experiments to determine hydrogen-detector response to steam injections into sodium at various flow rates. Simulations of these experiments consisted of introducing steam at 0.001 lb/sec for 70 sec at node 16 into sodium at 300, 465, 630, and 800 gpm.

Fig. 8. Transient Concentrations of Reaction Products Resulting from a Steam* Injection of 0.001 lb/sec for 70 sec at Injector I4; Sodium Flow Rate of 800 gal/min at 940°F (504°C), without Cold Trapping

Fig. 9. Response of Hydrogen Detectors to a Steam Injection of 0.001 lb/sec for 70 sec at Injector I4 (See Fig. 2); Sodium Flow Rate of 800 gal/min at 940°F (504°C), without Cold Trapping

Fig. 10. Transient Hydrogen Concentrations at Nodes 1, 16, and 27 Resulting from a Steam Injection of 0.001 lb/sec for 70 sec at Injector I4 (See Fig. 2); Sodium Flow Rate of 800 gal/min at 940°F (504°C), without Cold Trapping

Figure 11 shows the response of hydrogen detector No. 1 (see end of pipe 49, Fig. 2), which monitored the upper stagnant-sodium section of the steam-generator module during sodium flow rates of 300 and 800 gpm.

Fig. 11. Response of Hydrogen Detector No. 1 (See Fig. 2) at Different Sodium Flow Rates, to a Steam Injection of 0.001 lb/sec for 70 sec from Injector I4

Figures 12-15 show the response of hydrogen detector No. 3, which monitored the steam-generator outlet during sodium flow rates of 300, 465, 630, and 800 gpm, respectively.

Fig. 12. Response of Hydrogen Detector No. 3 to a Steam Injection of 0.001 lb/ sec for 70 sec at Injector I4, during Sodium Flow at 300 gpm

Fig. 13. Response of Hydrogen Detector No. 3 to a Steam Injection of 0.001 lb/ sec for 70 sec at Injector I4, during Sodium Flow at 465 gpm

Fig. 14. Response of Hydrogen Detector No. 3 to a Steam Injection of 0.001 lb/ sec for 70 sec at Injector I4, during Sodium Flow at 630 gpm

Fig. 15. Response of Hydrogen Detector No. 3 to a Steam Injection of 0,001 lb/ sec for 70 sec at Injector I4, during Sodium Flow at 800 gpm

These figures reveal that the delay between leak occurrence and detection of hydrogen concentration increases as the flow rate is decreased. If the detector is close to the leak site, as with, for example, detector number 3 in this case, the maximum transient overshoot in detector response increases when flow rate is reduced.

D. Simulation of a Tightly Coupled Loop

The flexibility of the program is demonstrated by simulating a different type of loop. In this system, the huge sodium vessel containing the steam generator is excluded. Instead, three more segments are added to the steam generator unit. A short leak of $0.015~\rm lb/sec$ for a 5-sec period was injected from Injector I4 at 800 gpm and was simulated at $940^{\circ} F$ ($504^{\circ} C$). The results are shown in Figs. 16-20.

The oscillatory nature of the concentration changes is due to the elimination of the huge mixing volumes of the CCTL vessel, which smooth out any type of transient. A short leak, such as is simulated in this experiment, will contaminate a lump of sodium. Whenever this lump passes through a segment of the loop or near a detector, an increase in contamination is observed. After several passages, the transients die out because of the mixing process. The distance between the peaks in the figures is the transit time and is observed to be 14 sec (calculated value, 13.76 sec).

Fig. 16. Transient Hydrogen Concentration in a Tightly Coupled Loop at Pump Node 1 Resulting from a Steam Injection of 0.015 lb/sec for 5 sec into Sodium at 800 gpm and 940°F (504°C), at Injector I4

Fig. 17. Transient Hydrogen Concentrations in a Tightly Coupled Loop Resulting from a Steam Injection of 0.015 lb/sec for 5 sec at Injector I4, at 800 gpm and 940°F (504°C)

Fig. 18. Response of Hydrogen Detectors in a Tightly Coupled Loop Resulting from a Steam Injection of 0.015 lb/sec for 5 sec at Injector I4. Sodium flow is 800 gpm at 940°F (504°C).

Fig. 19. Transient Hydrogen Concentrations in a Tightly Coupled Loop Resultings from a Steam Injection of 0.015 lb/sec for 5 sec at Injector I4. Sodium flow is 800 gpm at 940°F (504°C).

Fig. 20. Transient Concentrations of Reaction Products in a Tightly Coupled Loop Resulting from a Steam Injection of 0.015 lb/sec for 5 sec at Injector 14. Sodium flow is 800 gpm at 940°F (504°C).

Similar results were obtained by Berault et al., 13 when a short burst of water was injected into their loop, which included mainly piping segments. The transit time was about 5 min, and 13 peaks were observed before the hydrogen diffused and mixed through system and a stable hydrogen concentration was established.

With reference to the present simulation, Fig. 16 shows the hydrogen concentration at the pump (node 1). Seven peaks occur during the first 100 sec, and the transient dies out soon thereafter.

Figure 17 compares the transient hydrogen concentrations at node 23, end of pipe 47, and the response of detector No. 3 with the transient concentration at the leaking node 16. The leak is represented by a step function 5 sec wide, after which the concentration is reduced to the background value, successive peaks appear after each transit time.

Figure 18 shows the response of hydrogen detectors No. 1 and 3. The integrating effect of the detectors compared to actual hydrogen concentration at nodes 23 and 6 is apparent.

Figure 19 shows the transient hydrogen concentration at nodes 23 and 29. Node 29 is at a "5-sec distance" from node 23. The same transient results; however, because of mixing effects, the appropriate peaks at node 29 are lower than those at segment 23.

Finally, Fig. 20 shows changes in concentration of reaction products NaH, NaOH, Na $_2$ O, and hydrogen at node 27.

E. Effect of Cold-trap Operation

In these simulations, it was assumed that the CCTL cold trap had a static efficiency of β = 0.9, and the flow through the cold trap was 4 gal/min. Steam was introduced at Injector I4 (node 16), at a rate of 0.0001 lb/sec for 70 sec, and the simulations continued for 15 min. The results with and without cold-trap operation are shown in Figs. 21-24.

Figure 21 shows hydrogen concentrations at node 1, the pump segment. Figure 22 shows the hydrogen concentrations at node 27. Figure 23 gives the response of the hydrogen meter monitoring the steam-generator outlet. Figure 24 shows the Na₂O concentration at node 27.

These results evidence how cold-trap operation reduces impurity concentrations and is reflected in the detector readings. To obtain the new steady-state concentrations resulting from continuous cold-trap operation, the simulation would have had to be continued for about 3 hr. Due to current computer limitations, this was not considered practical. The CCTL-DYSP program has a ratio of simulation time to real time ranging from 0.2 to 0.9. For very fast rates of change in the variables and short transients, the 0.9 ratio should be taken; for slow transients and long simulation times, the 0.2 ratio can be used.

Fig. 21. Effect of Cold-trap Operation on Hydrogen Concentration in the Pump Segment (Node 1)

Fig. 22. Effect of Cold-trap Operation on Hydrogen Concentration in the CCTL Vessel (Node 27)

Fig. 23. Effect of Cold-trap Operation on Hydrogen
Detector Monitoring the Steam-generator
Outlet

Fig. 24. Effect of Cold-trap Operation on Na₂O Concentration in the CCTL Vessel (Node 27)

F. Effect of Different Reaction Rates

As explained previously (see Sec. III.A, C, and F), little is known about the reaction rates of the various processes occurring once the impurities enter the sodium. It is evident that simulation results cited in previous paragraphs will vary according to the assumptions made concerning the various reaction parameters. For example, the rate at which hydrogen gas leaves the sodium and enters the cover gas will be considered. It is currently assumed that the half-life of hydrogen gas--to reach equilibrium with the cover gas--is 2000 min. At this rate of hydrogen disengagement, no change in the hydrogen content in the cover gas is observed. However, if this half-life is reduced to 2 min, the

hydrogen concentration in the cover gas rises sharply, as shown in Fig. 25. At least some of the uncertainties in these data are expected to be resolved by the CCTL leak-detection experiments.

Fig. 25. Change in Cover-gas Hydrogen Concentration When Hydrogendisengagement Half-life is Reduced by a Factor of 1000

G. Effect of Leak Location

The response of the CCTL experiment detector is expected to vary with the water-leak location. These changes are demonstrated in Figs. 26 and 27, which show the detector response to identical steam injections of 0.01 lb/sec for 5 sec. One injection is close to the steam-generator inlet, Injector I7; the other, Injector I1 is at the steam-generator outlet. Hydrogen detector No. 3 is monitoring the outlet from the steam-generator module. In Fig. 26, the second leak--close to the outlet--is detected first. Figure 27 shows the changes in hydrogen concentration at node 27 resulting from water injected at Injectors I1 and I7.

X. EXPERIMENTAL VERIFICATION

Recently some experimental results from the CCTL leak-detection experiment became available. On November 6, 1975, injection No. 22 took place in which 2.54 g/min of steam were injected at Injector I4. The leak duration was 57.5 sec, the sodium flow was 600 gpm, and the sodium temperature was 940°F (504°C). In Fig. 28 the experimental readings from the hydrogen

Fig. 26. Response of Hydrogen Detector No. 3 to a Steam Injection of 0.01 lb/sec for 5 sec from Two Different Injectors

Fig. 27. Transient Hydrogen Concentrations Resulting from Steam Injection of 0.01 lb/sec for 5 sec from Two Different Injectors

Fig. 28. Effect of Cold-trap Operation on Na₂O Concentration in CCTL Vessel (Node 27)

detector connected to segment 49 are superimposed on the detector response as predicted by the simulation program CCTL-DYSP. Except for random experimental noise, there is excellent agreement. Also shown are the predicted hydrogen concentrations at the end of pipe segment 40, and in the stagnant region of the heat exchanger (segment 6).

On November 7, 1975, injection No. 23 took place in which 0.98 g/min of steam was injected at Injector I4. The leak duration was 118.4 sec, the sodium flow was 300 gpm, and the sodium temperature was 940°F (504°C). In Fig. 29 the experimental readings from the hydrogen detector are superimposed on the detector response as predicted by the simulation. Small differences between the experimental and the predicted curves can be seen. These seem to be mainly due to the imperfect knowledge of the exact shape of the steam-injection curve, errors in the calculation of the delays in the sampling lines due to errors in the flowmeters, and random experimental noise, which is clearly visible on the experimental curve. In this experiment there was apparently a large calibration error in the interpretation of the detector readings. Therefore the experimental results were normalized to the steady-state result as obtained from the simulation.

XI. SUMMARY AND CONCLUSIONS

An analytical model has been developed to describe the kinetic and dynamic processes that occur when water leaks into a circulating sodium loop.

A computer code, CCTL-DYSP, solving the model equations was prepared. The distribution and the concentration of the sodium-water reaction products throughout the system was calculated, and it is shown that qualitatively the results are in agreement with similar calculations or experiments published elsewhere. Subsequent calculations, simulating two CCTL experiments were in good agreement with measured hydrogen concentrations (see Sec. X). However, note that experimental and theoretical information on small leaks, sodium-water interaction, and the subsequent distribution of hydrogen in a system, is scarce and of dubious validity.

Fig. 29. Changes in Cover-gas Hydrogen Concentrations When Hydrogendisengagement Half-life Is Reduced by a Factor of 1000

Most of the parameters governing hydrogen diffusion and transport throughout the system and its subsequent "evaporation" (or disengagement, if in bulk form) in the cover gas are not known. Some of the reaction parameters available, such as NaOH and HaH dissociation rates, are old data with large error limits obtained under laboratory conditions different from the actual operating conditions of the steam generator; and there is no quantitative information on how the reaction proceeds at the leak site. As a result, several assumptions had to be made and the results given in Sec. IX are dependent on these assumptions.

The contention is that the mathematical model is correct, since it is developed from basic principles. Values assumed for currently unknown parameters will be replaced with reliable experimental data, as they become available. In the meantime, the CCTL-DYSP will be used primarily to predict the response of the hydrogen and oxygen detectors during steam-generator leak-detection experiments in the CCTL.

Application of the CCTL-DYSP to a CRBRP steam-generator simulation will require some changes in the routines and additional input. For example, the program should account for (1) temperature variation from segment to segment (either to be calculated or supplied as input), (2) hydrogen diffusion through the steam-generator walls, and (3) other sources and sinks of hydrogen and oxygen that may be significant. These changes will not affect the program structure; rather they will add terms to the hydrogen and oxygen sources in the appropriate routine.

APPENDIX A

Mathematical Model Used in CCTL Dynamic Simulation Program (CCTL-DYSP)

The equations and notations described in this appendix are identical to those used in CCTL-DYSP; algebraic operations are written mostly in FORTRAN symbolics.

1. An Ideal Mixing Plenum

In "ideal mixing" it is assumed the inlet stream of sodium into a segment is instantly and totally mixed with the sodium in the segment. The equations describing concentration changes of the four reaction products (i.e., Cl for NaH, C2 for NaOH, C3 for Na₂O, and C4 for hydrogen) are

$$DC1(I) = (W(I)*(C1(II) - C1(I)) + CC1)/M(I) + S1(I),$$
(A.1)

$$DC2(I) = (W(I)*(C2(II) - C2(I)) + CC2)/M(I) + S2(I),$$
(A.2)

$$DC3(I) = (W(I)*(C3(II) - C3(I)) + CC3)/M(I) + S3(I),$$
(A.3)

and

$$DC4(I) = (W(I)*(C4(II) - C4(I)) + CC4)/M(I) + S4(I),$$
(A.4)

where

DC1-DC4 = time derivatives of the appropriate reaction-product concentrations,

I = index of the variables or number of node for which concentrations are calculated,

II = index number of the segment from which the main flow enters the Ith segment (usually II = I - 1),

M(I) = mass of the Ith segment,

W(I) = total flow through the Ith segment,

and CC1-CC4 account for concentration changes other than those due to the main-stream inlet and outlet for the four reaction products.

For multiple entry nodes, the following equations apply:

For node 22,

$$CC1 = WEX*(C1(3) - C1(21)).$$
 (A.5)

For node 27,

$$CC1 = WT1*C1(50) + WT3*C1(48) + WT4*C1(46) - WDET*C1(27),$$
 (A.6)

where

$$WDET = WT1 + WT3 + WT4.$$
 (A.7)

For node 29,

$$CC1 = WCT*(C1(43) - C1(28)).$$
 (A.8)

The S terms in Eqs. A.1-A.4 are the reaction-product sources resulting from primary or secondary reactions and are given by

$$S1(I) = KK1*QS(I)/M(I) - DNAH,$$
(A.9)

$$S2(I) = KK2*QS(I)/M(I) - DNAOH,$$
(A.10)

$$S3(I) = KK3*QS(I)/M(I) + DNAOH,$$
(A.11)

and

$$S4(I) = KK4*QS(I)/M(I) + (DNAH + DNAOH)*0.5 - WH/M(I),$$
 (A.12)

where

QS(I) = leak rate at the Ith node,

WH = rate of hydrogen escape from the segment into the cover-gas plenum,

$$DNAH = RR1*C1(I), \qquad (A.13)$$

$$DNAOH = R3*C2(I), (A.14)$$

RR1 = NaH dissociation rate,

$$RR1 = 0.597*EXP(-3833/TK)*((PDIS - PH)/PDIS)^{2}$$
(A.15)

TK = Kelvin temperature of sodium,

$$TK = (TEMP - 32)/1.8 + 273,$$
 (A.16)

TEMP = sodium temperature (in °F), which is an input value,

PDIS = NaH dissociation pressure,

PH = hydrogen partial pressure,

and

R3 = NaOH dissociation rate, which is an input value.

Finally, the actual values of the reaction-product concentrations are obtained by integrating the derivatives in Eqs. A.1-A.4 by an integration routine. Presently a simple Euler formula is used, but any integration procedure can be chosen.

2. Node with Cover Gas

The term WH in Eq. A.12 is given by

WH =
$$R1*(C4(I) - CHNA)$$
 for CHNA > C4(I), (A.17)

where

R1 = hydrogen-gas disengagement constant,

CHNA = hydrogen concentration in sodium that would be achieved under equilibrium conditions according to Sieverts' constant,

$$CHNA = KS*SQRT(PH), (A.18)$$

and

KS = Sieverts' constant,

$$KS = EXP(1.9733 - 276.77/TK)*453.6/2.0116*10^{-6}.$$
 (A.19)

The partial hydrogen pressure PH in the cover gas is calculated from the ideal gas laws, and is given by

$$DPH = (WHPU + WHCT)*554*TPLEN/VPLEN, (A.20)$$

where

WHPU = hydrogen gas escaping through the pump,

WHCT = hydrogen gas escaping through the CCTL vessel,

TPLEN = absolute temperature in the cover gas,

TPLEN = TEMP + 460,

and

VPLEN = total volume of gas plenum, including the CCTL vessel, the expansion tank, and the pump tank.

Finally, DPH is integrated to obtain PH.

3. Pipe Node and Generating Delay Functions

A pipe in the system generates a time lag or holds up an event occurring at the pipe inlet for a period equivalent to the passage time through the pipe.

A time lag for a specified event is generated by storing the appropriate concentrations at the pipe-inlet node along with appropriate time values. Each pipe segment is allocated 100 memory locations. Pipe-inlet values are stored initially at constant time intervals. When the simulation starts, these values are stored whenever a change larger than PDEL in the pipe-inlet variable occurs; PDEL is usually 0.5 or 1%. When the outlet variable of a pipe segment is required, the lag time τ is first calculated by

$$\tau = M(I)/W(I). \tag{A.21}$$

Then the value of the variable is calculated by linear interpolation of the two closest variables available at time $t - \tau$ in a pipe function.

The secondary reactions in the pipe are accounted for by the following equations. Assuming FX1, FX2, FX3, and FX4 are the pipe-outlet variables at time t - τ , the true pipe-outlet concentrations are given by

$$C1(I) = FX1 + S1(I)*\tau,$$
 (A.22)

$$C2(I) = FX2 + S2(I)*\tau,$$
 (A.23)

$$C3(I) = FX3 + S3(I)*\tau,$$
 (A.24)

$$C4(I) = FX4 + S4(I)*\tau,$$
 (A.25)

where

$$S1(I) = -RR1*FX1, (A.26)$$

$$S2(I) = -R3*FX2,$$
 (A.27)

$$S3(I) = -S2(I),$$
 (A.28)

and

$$S4(I) = -(S1(I) + S2(I)*0.5.$$
 (A.29)

4. Cold Trap

The cold trap causes reaction products to precipitate at a rate

$$W42 = BETA*(C1(42) - C1SAT),$$
 (A.30)

and

$$W420 = BETA*(C3(42) - C3SAT),$$
 (A.31)

where

W42 = precipitation rate of NaH,

W420 = precipitation rate of Na₂O,

BETA = dynamic cold-trap efficiency,

CISAT = saturation concentration of NaH,

C1SAT =
$$453.6*10^{-6}/23.9983*EXP(13.93 - 6631.4/TCLT)$$
, (A.32)

C3SAT = saturation concentration of Na₂O,

C3SAT =
$$453.6*10^{-6}/61.98*EXP(16.131 - 6493.3/TCLT)$$
, (A.33)

where

TCLT = absolute cold-trap temperature

$$TCLT = (TCLT - 32)/1.8 + 273$$
 (A.34)

5. Detectors

The derivative of a hydrogen-detector response is given by

$$DPP = (CD1 + CD4 - CDET(N))/TDLE(N),$$
(A.35)

where

TDLE(N) = diffusion delay time of Nth hydrogen detector,

CDET(N) = response of Nth detector obtained by integrating DPP or the detector internal hydrogen concentration,

CD1 =
$$(FX1 + SD1*TAU)*1.0083*10^6/453.6,$$
 (A.36)

and

$$CD4 = (FX4 + SD4*TAU)*2.0166*10^6/453.6.$$
 (A.37)

FX1 and FX4 are hydride and hydrogen concentrations, respectively, at the outside of detector membrane, and are equal to the monitored segment concentration at time TIME - TAU, where TAU is given by

$$TAU = M(N1)/W(N1) + TLAG(N).$$
 (A.38)

In Eq. A.38, M(N1) and W(N1) are the mass and the flow rate of the monitoring bypass pipe segment, and TLAG is the time lag of the Nth detector. The hydrogen-detector response in ppm is obtained by integrating Eq. A.35. The oxygen-detector response is calculated from

$$DPP = (CD3 - CDET(N))/TDLE(N), (A.39)$$

where

CD3 =
$$(FX3 + SD3*TAU)*16.0*10^6/453.6$$
 (A.40)

and

$$SD3 = R3*FX2.$$
 (A.41)

The oxygen-meter response is obtained by integrating Eq. A.39. The readout of the hydrogen meter in the cover gas is proportional to the hydrogen partial pressure. The readout is converted to ppm by volume using the relation

$$CD4 = PH*10^6/(PH + PA),$$
 (A.42)

where

PH = hydrogen partial pressure

and

PA = argon-cover-gas partial pressure.

The detector response is calculated by integrating

$$DPP = (CD4 - CDET(N))/TDLE(N), (A.43)$$

where CDET(N) is the detector response, and TDLE(N) is the delay time of the Nth detector.

APPENDIX B

Description of CCTL-DYSP

A simplified schematic of the simulation program is shown in Fig. B.1. The program is written in FORTRAN in a modular form. It has five calculating

Fig. B.1. Simplified Schematic Flowchart of CCTL-DYSP

subroutines, a coordinating main program, two service subroutines for printing and plotting results, and a small integrating routine.

The main coordinating program first calls the INIT routine in which data are read in, initial values are calculated and printed, and the pipe initial function is set up. The program then proceeds to the dynamic phase by increasing time by a time step, and increasing the time-step counter by 1.

The first subroutine called in the dynamic section is SOURCE. This routine calculates the source of reaction products resulting from any type of chemical reaction at each loop segment. Equations A.5-A.19 are solved.

The second routine called is INTEGR, which computes the derivatives of all reaction-product concentrations in the loop segments and pipe outlets. This routine has access to the PIPE subroutine to compute pipeoutlet concentrations, and to the INTGI routine, which performs the actual integration.

The main program then accesses the DETECT subroutine, which computes the appropriate detector responses.

After the variables for a time step have been calculated by appropriate integration of the differential equations, the program updates the inlet variables for the pipe segments by calling PIPE. The program then enters the PRIT routine, and, if requested, some data such as detector responses and concentrations at some of the nodes are printed.

Every TPR seconds—as determined by the input parameter—a complete "map" of the system is printed, which includes derivatives, sources, and actual concentration of the four reaction products at each segment and pipe outlet. The SPLOT routine is entered next, and user—selected data are stored in a specific file for later plotting.

Finally, the program checks the time; if it is less than the predetermined length of simulation, a time-step calculation is repeated. If the time is equal to the final simulation time, the program terminates by printing a final "map" of the system and print-plotting the results previously stored in a file. The listing of the program is given in Appendix C, and the input data are described in Appendix D.

APPENDIX C

Listing of CCTL-DYSP

```
CCTL.FORT
PRESENT DATE 8/11/76 DSK203
```

```
10 C
 15 C
        CCTL-DYSP: A DYNAMIC SIMULATION PROGRAM TO CALCULATE HYDRUGEN
 20 C
         AND DXYGEN CONCENTRATION IN WATER TO SODIUM LEAK EXPERIMENT IN
 25 C
         THE CORE COMPONENT TEST LOOP.
 30 C
 35 C
      PROGRAM CAPACITY:
 40 C
                         50 SEGMENTS
 45 C
                         7 DETECTORS
                            REACTION PRODUCTS CONCENTRATIONS
 50 C
 55 C
                            CUMBINED COVER GAS PLENUM
 60 C
                         1 COLD TRAP
 65 C
 70 C----
 75
 80 C*************************** VOCABULARY **************
 95 C#.
100 C#. A - CRUSS SECTION AREA OF SEGMENT (FT**2)
105 C#. ABSC - THE HEADING TO BE PRINTED ALONG THE ABSCISAE OF
             GRAPHIC OUTPUT
110 C#.
115 C#. BETA - RATE AT WHICH NAH IS REMOVED IN THE COLD TRAP
120 C#. C1 - CUNCENTRATION OF NAH (MOL/LB)
125 C#. C1SAT - SATURATION CONCENTRATION OF NAH AT COLD TRAP TEMPERATURES.#C
130 C#. C2 - CONCENTRATION UF NACH (MOL/LB)
135 C#. C3 - CONCENTRATION OF NA20 (MOL/LB)
140 C#. C4 - CONCENTRATION OF H2 (MOL/LB)
                                                                    . #C
145 C#. CDET - DETECTOR READING IN PPM
150 C#. FIGTTL - TITLE GIVE TO A FIGURE DRAWN BY THA CALCOMP PLUTTER
                                                                    . #C
155 C#. FINTIM - SIMULATION TIME FOR THIS RUN IN (SEC)
160 C#. IC - NODE NUMBERS FOR WHICH CINCENTRATIONS TO BE PLOTTED
                                                                    . #C
165 C#. ICT - NUDE NUMBERS FOR WHICH PPM CONC OF H2 IS PRINTED PER STEP
                                                                    . #C
                                                                    . #C
170 C#. IQ - NUMBER OF NODE AT WHICH LEAKAGE MIGHT OCCURE
                                                                    . #C
175 C#. JPL - PLOTTING COUNTER
180 C#. JPR - PRINTING COUNTER
185 C#. JT - TIME STEP COUNTER
                                                                   . #C
190 C#. K1 - FRACTION OF H20 LEAK TO: NA+H20=NAOH+1/2H2(G)
195 C#. K2 - FRACTIUN OF H20 LEAK TO: 2NA+H20=NAOH+NAH
                                                                   . #C
200 C#. K3 - FRACTION OF HZU LEAK TU: 3NA +HZU=2NAH+NA20
205 C#. K4 - FRACTION OF H20 LEAK TO: 2NA+H20=NA20+H2
                                                                    . #C
206 C#. KH - IF 1 WATER LEAK, IF 2 HYDRUGEN LEAK.
210 C#. L - LENGTH UF SEGMENT (FT)
                                                                    . #C
215 C#. LG - SEGMENT IDENTIFICATION NUMBER: 0 NO SEGMENT
                                                                    . #C
                                         1 PLENUM MIXED SEGMENT
2 PIPE SEGMENT
220 C#.
225 C#.
                                         3 PLENUM MIXING WITH COVER GA. #C
230 C#.
                                         5 PLENUM WITH COVER AND MULTE. #C
235 C#.
240 C#. M - MASS OF SUDIUM IN SEGMENT
245 C#. NAME - NAME OF APPROPRIATE VECTUR TO BE PLOTTED
                                                                   . #C
                                                                   . #C
250 C#. NGRAF - NO. OF CURVES TO BE PRINTPLUTTED OR PLOTTED PER FIG.
                                                                   .#C
255 C#. NODE - NUMBER OF NODE TO WHICH DETECTOR IS CONNECTED
                                                                   . #C
260 C# NTYPE - TYPE OF DETECTOR USED MONITORING AT SEGMENT 'NODE'
```

```
265 C#. NUDET - NUMBER OF DETECTORS IN THE SYSTEM
                                                                          .#C
                                                                          . #C
270 C#. PA - ARGON PARTIAL PRESSURE IN COVER GAS
                                                                          . #C
275 C#. PDIS - NAH DISSUCIATION PRESSURE
280 C#. PDEL - MAXIMUM PERMITED CHANGE IN NODE 23 FUR PIPE UPDATA
                                                                          . #C
                                                                          . #C
285 C#. PH - HYDROGEN PARTIAL PRESSURE IN COVER GAS (MM-HG)
290 C#. PRT1 - IF TRUE INITIAL PIPE FUNCTION DISTRIBUTION WILL BE
                                                                          . #C
               PRINTED
                                                                          . #C
295 C#.
                                                                          .#C
300 C#. PRT2 - RESERVED
                                                                          . #C
305 C#. PRT3 - RESERVED
                                                                          . #C
310 C#. PRT4 - RESERVED
315 C#. PRTS - IF TRUE A CALCUMP 580 PLUT OF THE PREDETERMINED VARI-
                                                                          . #C
                                                                          . #C
              ABLES WILL BE PREPARED
320 C#.
322 C#. PIDL - MAXIMUM PERMITED TIME INTERVAL FUR PIPE UPDATE
                                                                          .#C
                                                                          . #C
325 C#. Q - H20 LEAKAGE IN THE I-TH NODE (LBS/SEC)
330 C#. R1 - RATE OF H2 DISENGAGEMENT FROM LIQUID NA TO COVER GAS (SEC-1).#C
335 C#. R2 - RATE OF NAH DISSUCIACION NAH=NA+H (SEC-1*MM-HG-2)
                                                                          . #C
340 C#. R3 - RATE OF NACH DISSOCIATION NAUH+NA=NA20+H (SEC-1)
                                                                          . #C
345 C#. S1 - SOURCE OF NAH (MOL/SEC)
                                                                          .#C
350 C#. S2 - SOURCE OF NACH (MOL/SEC)
                                                                          . #C
355 C#. S3 - SOURCE OF NA20 (MOL/SEC)
                                                                          . #C
360 C#. S4 - SOURCE OF H2 (MOL/SEC)
365 C#. TQ - TIME AT WHICH LEAKAGE AT I-TH NODE STARTS (SEC)
                                                                          . #C
370 C#. TX - TIME AT WHICH LEAKAGE AT I-TH NODE TERMINATES (SEC)
                                                                          . #C
                                                                          . #C
375 C#. TCLT - COLD TRAP TEMPERATURE (DEG F OR K)
                                                                          .#C
380 C#. TDLE - DIFFUSION TIME CUNSTANT FOR DET. NICKEL MEMBRANE (SEC)
                                                                          .#C
385 C#. TEMP - SODIUM TEMPERATURE (DEG F)
                                                                          . #C
390 C#. TIME - CURENT SIMULATION TIME (SEC)
        TLAG - TIME LAG BETWEEN DETECTOR SAMP.LINE INLET AND DETECTOR (SE.#C
395 C#.
400 C*. TMM - TOTAL SODIUM MASS IN CCTL (LBS)
                                                                          .#C
                                                                          . #C
405 C*. TMT - TOTAL COOLANT TRANSIT TIME (SEC)
                                                                          .#C
410 C#. TPL - PLOTING INTERVAL (SEC)
                                                                          . #C
415 C#. TPR - PRINTING INTERVAL (SEC)
                                                                          . #C
420 C#. WCT - FLOW THROUGH THE COLD TRAP IN (GPM)
                                                                          . #C
425 C*. WS - TOTAL SODIUM FLOW IN CCTL (GPM)
                                                                          . #C
430 C#. WT1 - FLOW TO DETECTOR # 1 (LBS/SEC)
                                                                          . #C
435 C#. WT2 - FLOW TO DETECTOR # 2 (LBS/SEC)
                                                                          . #C
440 C#. WT3 - FLOW TO DETECTOR # 3 (LBS/SEC)
                                                                          . #C
445 C#. WT4 - FLOW TO DETECTOR # 4 (LBS/SEC)
450 C#....#C
460
          COMMON /BLK/ L,A,M,C1,C2,C3,C4,LG,WS,WCT,WT1,WT2,WT3,WT4,WEX,TEMP,
465
470
         C FINTIM, RONA, DTMIN, DTMAX, S1, S2, S3, S4, JT, KS, TPR, IQ, ICT, W, JCT,
475
         C WR, WA, WX, WB, WC, WD, WE, Q, TQ, TX, QS, PDIS, PH, PA, K1, K2, K3, K4, R1, R2, R3,
480
         C WHCT, WHPU, TPLEN, VPLEN, IC, TPL, CHNA, RR1, QX, QXT, QHT, C1SAT, BETA,
485
         C ALFA, TMM, NPICT, NGRAF, NVECT, NAME, IPI, NUDET, NUDE, NTYPE,
490
         C TLAG, CDET, TDLE, C3SAT, PDEL, FIGTTL, PTDL, KH
495
          COMMON /LUG/ TITLE, PRT1, PRT2, PRT3, PRT4, PRT5
          COMMON /DUB/ TIME, DELT, DC1, DC2, DC3, DC4, ABSC
500
505
          REAL*4 L(50),A(50),M(50),C1(50),C2(50),C3(50),C4(50),W(50)
510
          REAL*4 S1(50),S2(50),S3(50),S4(50),Q(8),TQ(8),TX(8),QS(50)
515
          REAL * 4 K1, K2, K3, K4, KS, TITLE (18), TLAG (7), CDET (7), TDLE (7)
520
         REAL*8 DC1(50),DC2(50),DC3(50),DC4(50),TIME,DELT,ABSC(4,10)
```

```
525
           LOGICAL PRT1, PRT2, PRT3, PRT4, PRT5
530
           DIMENSION LG(50), IQ(8), IC(8), ICT(8), NGRAF(10), NVECT(10,5),
535
          C NAME(10,15), IPI(50), NODE(7), NTYPE(7), FIGTTL(15,10)
540
545
           CALL INIT
550
           L V = 1
555
           QXT=0.
560
           C40LD=C4(23)
565
           TOLD=0.
570
           GOTO 20
    C**** START TIME DEPENDENT CALCULATIONS
575
580
       10
           TIME=TIME+DELT
585
           JT = JT + 1
590
           CALL SOURCE
595
           CALL INTEGR
           CALL DETECT
600
605 C**** UPDATE PIPE FUNCTIONS IF CHANGE > PDEL UR ELAPSED TIME MORE THEN .
610 C**** 0.5 SECUNDS
           TIM=TIME
615
           CHNG=(C40LD-C4(23))/C40LD
620
625
           CHTM=TIM-TOLD
630
           IF (ABS (CHNG) . LT. PDEL . AND . CHTM . LT. PTDL) GOTO 20
635
           TOLD=TIM
640
           C40LD=C4(23)
645
           DEL=DELT
650
           CALL PIPE(TIM, DEL, 0.0, 1, C1(1), C2(1), C3(1), C4(1))
655
           CALL P1PE(TIM,DEL,0.0,2,C1(3),C2(3),C3(3),C4(3))
660
           CALL PIPE(TIM, DEL, 0.0, 3, C1(23), C2(23), C3(23), C4(23))
665
           CALL PIPE(TIM, DEL, 0.0, 4, C1(27), C2(27), C3(27), C4(27))
           CALL PIPE(TIM, DEL, 0.0, 5, C1(29), C2(29), C3(29), C4(29))
670
675
           CALL PIPE(TIM, DEL, 0.0, 6, C1(6), C2(6), C3(6), C4(6))
680
           CALL PIPE(TIM, DEL, 0.0, 7, C1(25), C2(25), C3(25), C4(25))
685
           CALL PIPE(TIM, DEL, 0.0, 8, C1(42), C2(42), C3(42), C4(42))
           CALL PIPE (TIM, DEL, 0.0, 10, RR1, PH, CHNA, 0.0)
690
    C**** PERFORM TUTAL HYDROGEN BALANCE CALCULATIONS FOR THIS TIME STEP
695
700
        20 QX=0.
705
           QHT=0.
710
           DO 92 I=1,50
           IF(LG(I).EQ.0) GOTO 92
715
           QHT=QHT+(0.5*C1(I)+0.5*C2(I)+C4(I))*M(I)
720
725
           QX=QX+QS(I)
730
        92 CONTINUE
735
           QXT=QXT+QX*DELT
           QHT=QHT+PH*VPLEN/(TPLEN*554.0)
740
           ALFA=(0.5*C1(ICT(1))+C4(ICT(1)))*TMM/QHT
745
           CALL SPLOT(LV)
750
755
           CALL PRIT(LV)
760
           TIM=TIME
765
           LV=2
           IF (FINTIM-TIM.GT.DELT/2) GOTO 10
770
           CALL PRIT(3)
775
780
           CALL SPLOT(3)
785
           STOP
```

```
790
           END
795
800 C----
805 C
810 C
             SUBRUUTINE INIT
             THIS SUBROUTINE INITIALIZES THE PROGRAM, READS INPUT DATA
                                                                                      C
815 C
                                                                                      C
             AND SUPPLIES DEFAULT VALUES TO DATA NOT IN INPUT STREAM
820 C
                                                                                      C
825 C
830 C-----
835
840
           SUBROUTINE INIT
           COMMON /BLK/ L,A,M,C1,C2,C3,C4,LG,WS,WCT,WT1,WT2,WT3,WT4,WEX,TEMP,
845
          C FINTIM, RONA, DTMIN, DTMAX, S1, S2, S3, S4, JT, KS, TPR, IQ, ICT, W, JCT,
850
          C WR, WA, WX, WB, WC, WD, WE, Q, TQ, TX, QS, PDIS, PH, PA, K1, K2, K3, K4, R1, R2, R3,
855
          C WHCT, WHPU, TPLEN, VPLEN, IC, TPL, CHNA, RR1, QX, QXT, QHT, C1SAT, BETA,
860
            ALFA, TMM, NPICT, NGRAF, NVECT, NAME, IPI, NUDET, NODE, NTYPE,
865
          C TLAG, CDET, TDLE, C3SAT, PDEL, FIGTTL, PTDL, KH
870
            CUMMON /LOG/ TITLE, PRT1, PRT2, PRT3, PRT4, PRT5
875
            COMMON /DUB/ TIME, DELT, DC1, DC2, DC3, DC4, ABSC
880
            REAL*4 L(50), A(50), M(50), C1(50), C2(50), C3(50), C4(50), W(50)
885
            REAL*4 S1(50), S2(50), S3(50), S4(50), Q(8), TQ(8), TX(8), QS(50)
890
            REAL*4 K1, K2, K3, K4, KS, TITLE(18), TLAG(7), CDET(7), TDLE(7)
895
            REAL*8 DC1(50), DC2(50), DC3(50), DC4(50), TIME, DELT, ABSC(4,10)
900
            LOGICAL PRII, PRI2, PRI3, PRI4, PRI5
905
910
            REAL * 4 MOL
            DIMENSION LG(50), IQ(8), IC(8), ICT(8), NGRAF(10), NVECT(10.5),
915
           C NAME(10,15), IPI(50), NODE(7), NTYPE(7), FIGITL(15,10)
920
925
            DIMENSION ADAT(20)
930
            DATA PI/3.1416/, CFPG/.13368981/, ADA/'9999'/
935 C
          1 READ 180, ADAT
940
            PRINT 190, ADAT
945
            IF (ADAT (1) . NE . ADA) GOTO 1
950
955
            REWIND 5
            NAMELIST /INLST/ L, LG, A, C1, C2, C3, C4, Q, TQ, TX, IQ, IC, ICT
960
           C /PARM/ TEMP, WS, WCT, WT1, WT2, PH, PA, K1, K2, K3, K4, R1, R3, BETA, C1SAT,
965
              WT3, WT4, WEX, FINTIM, DELT, DTMIN, DTMAX, TPR, VPLEN, TPL, JCT,
970
            PRT1, PRT2, PRT3, PRT4, PRT5, BETA, TCLT, PUEL, PTDL, KH
975
980
           C /DICIR/ NUDET, NODE, NIYPE, TOLE, TLAG
985
            READ 200, TITLE
990
            READ (5. INLST)
995
            READ (5, PARM)
            READ (5.DTCTR)
1000
1005
            READ 210
            READ 170, NPICT
1010
            READ 170 NGRAF
1015
            DO 3 N=1, NPICT
1020
            NN=NGRAF(N)
1025
1030
            READ 170, (NVECT(N,I), I=1, NN)
1035
            READ 220, ((NAME(N, (I-1) *3+J), J=1,3), I=1, NN)
1040
            READ 230, (ABSC(I,N), I=1,4)
1045
            READ 200, (FIGTTL (I, N), I=1, 15)
1050
          3 CONTINUE
```

```
1055
           RONA=59.566-TEMP*(7.9504E-3+TEMP*(2.872E-7-TEMP*6.035E-11))
1060
           MUL=453.6/18.02
1065
           Q X = 0 .
1070
            QXT=0.
            WS=WS*CFPG*RONA/60.
1075
            WCT=WCT*CFPG*RONA/60.
1080
1085
            WT1=WT1*CFPG*RONA/60.
1090
            WTZ=WTZ*CFPG*RONA/60.
1095
            WT3=WT3*CFPG*RONA/60.
            WT4=WT4*CFPG*RONA/60.
1100
1105
            WEX=WEX*CFPG*RONA/60.
1110
            WA=WS-WEX
1115
            WX=WA-W11-WT2
1120
            WB=WX+WEX
1125
            WC=WB-WT3
1130
            WD=WC-WT4-WCT
1135
            WE=WD+WT1+WT2+WT3+WT4
1140
            WR=WE+WCT
            TMM=0.
1145
1150
           DU 5 1=1.8
1155
         5 Q(I)=Q(I) *MOL
1160
           C1(1)=C1(1)*453.6/23.9986
1165
           C2(1)=C2(1)*453.6/39.9983
1170
           C3(1)=C3(1)*453.6/61.98
1175
           C4(1)=C4(1)*453.6/2.0166
1180
            TCLT=(TCLT-32.0)/1.8+273.0
1185
           C1SAT=453.6E-6/23.9983*EXP(13.97-6631.4/TCLT)
1190
           C3SAT=453.66-6/61.98*EXP(16.131-6493.3/TCLT)
1195
            IF(C1(1).EQ.0.0) C1(1)=C1SAT
            IF (C3(1).EQ.0.0) C3(1)=C3SAT
1200
1205
           DU 10 I=1,50
1210
           IPI(I)=0
1215
           C1(1)=C1(1)
1220
           C2(I)=C2(1)
1225
           C3(I)=C3(1)
1230
           C4(I) = C4(1)
1235
           IF(LG(I).NE.0) GOTO 9
1240
           C3(I)=0.
1245
           C4(I)=0.
1250
           C1(I)=0.
1255
           C2(I)=0.
1260
         9 W(I)=0.
1265
           S1(I)=0.
1270
           S2(I)=0.
1275
           S3(I)=0.
1280
           S4(I)=0.
1285
           US(1)=0.
1290
           M(I)=L(I)*A(I)*RUNA
1295
            IMM=IMM+M(I)
1300
           DC1(I)=0.
1305
           DC2(I)=0.
1310
           DC3(I)=0.
           DC4(I)=0.
1315
```

```
1320
        10 CONTINUE
1325 C**** INITIALIZE DETECTOR READING
            DO 11 N=1, NUDET
1330
            NIP=NIYPE(N)
1335
            GOTO (12,13,14), NTP
1340
        12 CDET(N)=(0.5*C1(1)+C4(1))*2.0166E+6/453.3
1345
1350
            GOTO 11
        13 CDET(N)=C3(1) *16.0E+6/453.3
1355
1360
            GOTO 11
        14 CDET(N)=PH*1.0E+6/(PA+PH)
1365
1370
        11 CONTINUE
1375
            M(46) = M(46) + M(45)
1380
            M(48) = M(48) + M(47)
1385
            M(50)=M(50)+M(49)
1390
            IM=0.
1395
            DU 15 I=1,30
1400
         15 TM=TM+M(I)
            TM=TM-M(6)
1405
1410
            TMT=TM/WS
1415
            IP=0
            CALL PIPE(TIME, DELT, 0., IP, C1(1), C2(1), C3(1), C4(1))
1420
1425
            TK=(TEMP-32.)/1.8+273.
1430
            TPLEN=TEMP+460.
1435
            KS=EXP(1.9733-276.77/TK) *453.6/2.0116*1.E-6
1440
            PDIS=EXP(26.71-14046.0/TK)
1445
            R2=0.597*EXP(-3833/TK)
1450 C
1455 C*** CALCULATE TOTAL FLOW THROUGH EACH SEGMENT
1460
            W(1)=WR
            w(2)=wS
1465
            W(3)=WS
1470
1475
            W (4) = WA
1480
            W(5)=WA
1485
             W(6)=WT1+WT2
1490
             W(7)=WA
1495
             DD 20 I=8,21
1500
        20 W(I)=WX
1505
             W(22)=WB
1510
             w(23)=WB
1515
             W(24)=WC
1520
             W(25)=WC
1525
             W(26)=WD
             W(27)=WE
1530
1535
             W(28)=WE
1540
           W(29)=WR
1545
            W(30)=WR
1550
            W(41)=WCT
1555
            W(42)=WCT
1560
           W (43) = WCT
1565
           W(45)=WT4
1570
           W(46)=WT4
1575
           w(47)=wT3
1580
           w(48)=wT3
```

```
1585
            W(49)=WT1
1590
            W(50)=WT1
1595 C**** SET APPROPRIATE PIPE FUNCTION NUMBERS TO PIPE SEGMENTS
1600
            IPI(2)=1
1605
            IPI (4)=2
1610
            IFI(24)=3
1615
            IPI (47)=3
1620
            IPI (48)=3
1625
            IPI(28)=4
1630
            IPI(30)=5
1635
            IPI(41) = 7
1640
            IPI (45)=7
1645
            IPI (46)=7
1650
            IPI (49)=6
1655
            IPI (50)=6
1660
            IPI(43) = 8
1665
            BETA=BETA + W (42) /M (42)
1670
            CALL SOURCE
1675
            CALL PIPE(TIME, DELT, 0.0, 10, RR1, PH, CHNA, 0.0)
1680 C
1685 C**** PRINT INITIAL DATA
1690
            PRINT 300, TITLE
1695
            PRINT 100
1700
            PRINT 110, IQ,Q,TQ,TX
1705
            YK1=K2+2.*K3
1710
            YK2=K1+K2
1715
            YK3=K3+K4
1720
            YK4=0.5*K1+K4
1725
            PRINT 150,K1,K2,K3,K4,YK1,YK2,YK3,YK4
1730
            PRINT 120, PDIS
1735
            PRINT 130, TEMP, TK, RONA, TMM, VPLEN, BETA, C1SAT, C3SAT, TMT, TCLT, KS
1740
            PRINT 140, WS, WCT, WT1, WT2, WT3, WT4, WEX, WA, WX, WB, WC, WD, WE, WR
1745
            PRINT 160, (N, NTYPE(N), NODE(N), TLAG(N), TDLE(N), N=1, NUDET)
1750
        99 RETURN
1755
            FORMAT(1H ,' LEAKAGE DATA FOR THIS CASE ARE: ')
1760
       110 FORMAT (1HO, 'FOR NODE SEGMENT #
                                                  ',8112/
              ' THE LEAKAGE IN MOL/SEC IS', 8E12.4/
1765
1770
              ' THE LEAK STARTS AT TIME -', 8F12.2/
1775
              ' THE LEAK IS TERMINATED AT', 8F12.2/)
1780
       120 FORMAT('OTHE NAH DISSUCIATION PRESSURE IN MM-HG IS', F12.3)
1785
       130 FURMAT(' SUDIUM TEMPERATURE IN (DEG-F)IS
                                                                   '.F12.2/
1790
                    ' SODIUM TEMPERATURE IN (DEG-K) IS
                                                                   ',F12.2/
1795
          C
                    ' SODIUM DENSITY IN (LBS/CUF) IS
                                                                   ',F12.2/
1800
          C
                    ' TOTAL WEIGHT OF SODIUM IN THE SYSTEM (LB) ', F12.2/
1805
          C
                    ' COVER GAS PLENUM VOLUME (CUF)
                                                                   ',F12.2/
1810
                    ' COLD TRAP DYNAMIC EFFICIENCY (1/SEC) IS
          C
                   ' NAH SATURATION CONC. AT COLD TRAP(MOL/LB)', E12.4/
1815
1820
          C
                    ' NAZU SATURATION CNC. AT COLD TRAP(MOL/LB)', E12.4/
1825
          C
                   ' TOTAL TRANSIT TIME IN CCTL (SEC) IS
                                                                   '.F12.2/
1830
          C
                   ' COLD TRAP TEMPERATURE IN (DEG-K) IS
                                                                   ',F12.2/
1835
                   ' SIEVERTS CONSTANT IN (MOL/(LB*TORR**-2))
                                                                 ',E12.4)
       140 FORMAT ('OTOTAL SODIUM FLOW IN (LBS/SEC) IS
                                                                    ',F12.4,
1840
1845
          C/30x, 'WCT', 9x, F12.4/30x, 'WT1', 9x, F12.4/30x, 'WT2', 9x, F12.4/
```

```
CCTL.FORT
```

```
C 30x, 'WT3', 9x, F12.4/30x, 'WT4', 9x, F12.4/30x, 'WEX', 9x, F12.4/
1850
          C 30x, 'WA ',9x,F12.4/30x, 'WX ',9x,F12.4/30x, 'WB ',9x,F12.4/
1855
            30x, 'WC ',9x,F12.4/30x, 'WD ',9x,F12.4/30x, 'WE ',9x,F12.4/
1860
            30x, 'WR ',9x,F12.4//)
1865
       170 FORMAT(10(12,1X))
1870
       150 FORMAT(1X,F4.2, ' OF THE LEAK GOES TO
                                                      NA+H2D=NA0H+1/2H2(G)'/
1875
                   1x,F4.2,' OF THE LEAK GOES TO
                                                     /'HAN+HOAN=OSH+ANS/
1880
          C
                   1x,F4.2, UF THE LEAK GOES TO
                                                     4NA+H20=2NAH+NA20'/
1885
          C
                   1x,F4.2, OF THE LEAK GOES TO
                                                     1,2H+02V=07H+VVZ
          C
1890
                   1x, F4.2, MOL UF THE LEAK IS TRANSFORMED TO NAH!
          С
1895
                   1x, F4.2, MOL OF THE LEAK IS TRANSFORMED TO NACH!
          C
1900
                   1x, F4.2, MOL OF THE LEAK IS TRANSFORMED TO NAZO'/
          C
1905
                   1x, F4.2, MOL UF THE LEAK IS TRANSFORMED TO H2(G)')
1910
          C
       160 FORMAT(1HO, ' DETECTOR NO ', II, ' OF TYPE ', II, ' IS CONECTED',
1915
            ' TO NODE ', IZ, ' HAS A LAG OF ', F5.2, 'SEC AND A DELAY OF',
1920
          C F5.2, 'SEC')
1925
1930
       180 FORMAT(20A4)
       190 FORMAT (10x, 20A4)
1935
1940
       200 FURMAT (18A4)
1945
       210 FORMAT(80x)
       220 FORMAT (5(3A4,1X))
1950
       230 FORMAT (4A8)
1955
       300 FORMAT('1',20('*'),18A4,20('*')//)
1960
1965
             END
1970
1975 C----
                                                                                  C
1980 C
           SUBROUTINE SOURCE.
                                                                                  C
1985 C
1990 C
            IN THIS SUBROUTINE SOURCES AND SINKS OF THE REACTION PRODUCTS
                                                                                  C
                                                                                  C
1995 C
           ARE CALCULATED
                                                                                   C
2000
2005 C--
2010
2015
             SUBROUTINE SOURCE
2020
           COMMON /BLK/ L,A,M,C1,C2,C3,C4,LG,WS,WCT,WT1,WT2,WT3,WT4,WEX,TEMP,
2025
          C FINTIM, RUNA, DTMIN, DTMAX, S1, S2, S3, S4, JT, KS, TPR, IQ, ICT, W, JCT,
            WR, WA, WX, WB, WC, WD, WE, Q, TQ, TX, QS, PDIS, PH, PA, K1, K2, K3, K4, R1, R2, R3,
2030
2035
            WHCT, WHPU, TPLEN, VPLEN, IC, TPL, CHNA, RR1, QX, QXT, QHT, C1SAT, BETA,
2040
            ALFA, TMM, NPICT, NGRAF, NVECT, NAME, IPI, NUDET, NODE, NTYPE,
2045
           C TLAG, CDET, TDLE, C3SAT, PDEL, FIGTTL, PTDL, KH
2050
            COMMON /LOG/ TITLE, PRT1, PRT2, PRT3, PRT4, PRT5
           COMMON /DUB/ TIME, DELT, DC1, DC2, DC3, DC4, ABSC
2055
2060
            REAL*4 L(50),A(50),M(50),C1(50),C2(50),C3(50),C4(50),W(50)
2065
            REAL*4 S1(50),S2(50),S3(50),S4(50),Q(8),TQ(8),TX(8),QS(50)
2070
            REAL*4 K1,K2,K3,K4,KS,TITLE(18),TLAG(7),CDET(7),TDLE(7)
2075
            DIMENSIUN LG(50), IQ(8), IC(8), ICT(8), NGRAF(10), NVECT(10,5),
           C NAME(10,15), IPI(50), NODE(7), NTYPE(7), FIGTTL(15,10)
2080
2085
            REAL * 4 KK1, KK2, KK3, KK4
2090
            REAL*8 DC1(50),DC2(50),DC3(50),DC4(50),TIME,DELT,ABSC(4,10)
2095
           LOGICAL PRIL, PRIZ, PRI3, PRI4, PRI5
2100 C
2105 C*** CALCULATE REACTION RATES
2106
            GOTO (1,3), KH
```

```
1 KK1=K2+2*K3
2110
2115
           KK2=K1+K2
           KK3=K3+K4
2120
2125
           KK4=0.5*K1+K4
           GOTO 4
2126
         3 KK1=2*K1
2127
2128
           KK2=0
           KK3=0
2129
2130
           KK4=1.-K1
         4 RR1=((PDIS-PH)/PDIS)*ABS((PDIS-PH)/PDIS)*R2
2134
2135
           CHNA=KS*SQRT(PH)
2140 C
2145 C**** DETERMINE LEAKAGE SOURCES
           DO 2 I=1.8
2150
           I2=IQ(I)
2155
2160
           QS(12)=0.0
2165
           IF(TIME.GE.TQ(I).AND.TIME.LE.TX(I)) QS(I2)=Q(I)
2170
        2
           CONTINUE
2175 C
2180 C**** CALCULATE SOURCES IN MOL/SEC
           DO 10 I=1,50
2185
2190
           IF(LG(I).EQ.0.OR.LG(I).EQ.2) GO10 10
           DNAH=RR1 *C1(I)
2195
           DNAOH=R3*C2(I)
2200
        11 S1(I)=KK1*QS(I)/M(I)-DNAH
2205
2210
            S2(I)=KK2*QS(I)/M(I)-DNAOH
2215
           S3(I)=KK3*QS(I)/M(I)+DNAOH
           $4(I)=KK4*Q$(I)/M(I)+(DNAH+DNAUH)*0.5
5550
2225
        10 CONTINUE
2230 C**** ACCOUNT FOR POSSIBLE BUBBLE MIGRATION IN THE CCTL VESSEL
2235
            W25=0.
2240
           W26=0.
2245
           WHCT=0.
2250
           WHPU=0.
            IF(C4(25).LE.C4(26)) GOTO 21
2255
,5590
            W25=R1*(C4(25)-C4(26))*M(25)
        21 IF(C4(26).LE.C4(27)) GOTO 22
2265
           W26=R1*(C4(26)-C4(27))*M(26)
2270
        22 C27=0.5*(C4(27)+C4(26)+0.5*(C1(27)+C1(26)))
2275
2280
            IF (C27.LE.CHNA) GOTO 23
            WHCT=R1 * (C27-CHNA) *M(27)
2285
        23 C01=0.5*(C4(1)+C4(30)+0.5*(C1(1)+C1(30)))
2290
2295
            IF (CO1.LE.CHNA) GOTO 24
           WHPU=R1 * (C01-CHNA) *M(1)
2300
2305 C*** ACCOUNT FOR COLD TRAP NAH REMODVAL
2310
        24 w42=0.0
2315
           W420=0.0
            IF(LG(42).EQ.0) GOTO 25
2320
2325
           W42=BETA*(C1(42)-C1SAT)
2330
           W420=BETA*(C3(42)-C3SAT)
            IF (W42.LT.0.0) W42=0.0
2335
            IF(W420.LT.0.0) W420=0.0
2340
        25 S4(25)=S4(25)-W25/M(25)
2345
```

```
$4(26)=$4(26)+(W25-W26)/M(26)
2350
            S4(27)=S4(27)+(W26-WHCT)/M(27)
2355
            S4(1)=S4(1)-WHPU/M(1)
2360
            S1(42)=S1(42)-W42
2365
            $3(42)=$3(42)-w420
2370
2375
            RETURN
2380
            END
2385
2390 C-----
2395 C
            SUBROUTINE INTEGR.
2400 C
            IN THIS ROUTINE CONCENTRATION OF THE VARIOUS REACTION PRODUCTS
2405 C
            FOR EACH SEGMENT ARE CALCULATED.
2410 C
2415 C
2420 C-----
2425
            SUBROUTINE INTEGR
2430
            COMMON /BLK/ L,A,M,C1,C2,C3,C4,LG,WS,WCT,WT1,WT2,WT3,WT4,WEX,TEMP,
2435
           C FINTIM, RONA, DIMIN, DTMAX, S1, S2, S3, S4, JT, KS, TPR, IQ, ICT, W, JCT,
2440
           C WR, WA, WX, WB, WC, WD, WE, Q, TQ, TX, QS, PDIS, PH, PA, K1, K2, K3, K4, R1, R2, R3,
2445
           C WHCT, WHPU, TPLEN, VPLEN, IC, TPL, CHNA, RR1, QX, QXT, QHT, C1SAT, BETA,
2450
           C ALFA, TMM, NPICT, NGRAF, NVECT, NAME, IPI, NUDET, NODE, NTYPE,
2455
           C TLAG, CDET, TDLE, C3SAT, PDEL, FIGTTL, PTDL, KH
2460
            COMMON /LOG/ TITLE, PRT1, PRT2, PRT3, PRT4, PRT5
2465
            COMMON /DUB/ TIME, DELT, DC1, DC2, DC3, DC4, ABSC
2470
            REAL*4 L(50), A(50), M(50), C1(50), C2(50), C3(50), C4(50), W(50)
2475
            REAL *4 S1(50), S2(50), S3(50), S4(50), Q(8), TQ(8), TX(8), QS(50)
2480
            REAL * 4 K1, K2, K3, K4, KS, TITLE (18), TLAG (7), CDET (7), TDLE (7)
2485
2490
            REAL*8 DC1(50),DC2(50),DC3(50),DC4(50),TIME,DELT,ABSC(4,10)
            LOGICAL PRILAPRIZAPRIZAPRIZAPRIS
2495
2500
            DIMENSION LG(50), IQ(8), IC(8), ICT(8), NGRAF(10), NVECT(10,5),
           C NAME(10,15), IPI(50), NODE(7), NTYPE(7), FIGTTL(15,10)
2505
2510 C
2515 C**** CALCULATE DERIVATIVES FOR VARIABLES TO BE INTEGRATED AND S*TAU
2520 C**** VALUES FOR PIPE SEGMENTS
2525
            DO 10 I=1.50
2530
            IF(LG(I).EQ.0) GOTO 10
2535
             CC1=0.
2540
             CC2=0.
2545
             CC3=0.
2550
             CC4=0.
2555
            LLG=LG(I)
2560 C*** CALCULATE DERIVATIVES FOR MIXING PLENUM NODES
2565
          5 II=I-1
2570
            IF (I.EQ.1) II=30
2575
            IF (I.EQ.6) II=7
2580
            IF (I.EQ.7) II=5
2585
            GOTO (4,10,4,8,8),LLG
2590
          4 DC1(I)=(W(I)*(C1(II)-C1(I))+CC1)/M(I)+S1(I)
2595
            DC2(I) = (W(I) * (C2(II) = C2(I)) + CC2) / M(I) + S2(I)
2600
            UC3(I) = (W(I) * (C3(II) - C3(I)) + CC3) / M(I) + S3(I)
2605
            DC4(I) = (W(I) * (C4(II) - C4(I)) + CC4) / M(I) + S4(I)
2610
            GUTU 10
```

C

C

C

```
2615 C*** MULTIPLE ENTRY NODES
         8 IF (I.NE.22) GOTO 7
2620
           CC1=WEX*(C1(3)-C1(21))
2625
           CC2=WEX*(C2(3)-C2(21))
2630
2635
           CC3=WEX*(C3(3)-C3(21))
2640
           CC4=WEX*(C4(3)-C4(21))
2645
           GOTO 4
2650
         7 IF(I.NE.27) G010 2
2655
           WDET=WT1+WT2+WT3+WT4
2660
           CC1=WT1*C1(50)+WT2*C1(48)+WT3*C1(48)+WT4*C1(46)-WDET*C1(27)
2665
           CC2=W11*C2(50)+WT2*C2(48)+WT3*C2(48)+WT4*C2(46)=WDET*C2(27)
           CC3=WT1*C3(50)+WT2*C3(48)+WT3*C3(48)+WT4*C3(46)-WDET*C3(27)
2670
2675
           CC4=WT1*C4(50)+WT2*C4(48)+WT3*C4(48)+WT4*C4(46)=WDET*C4(27)
2680
           GOTU 4
         2 IF(I.NE.29) GOTU 1
2685
2690
           CC1=WCT*(C1(43)-C1(28))
2695
           CC2=WCT*(C2(43)-C2(28))
2700
           CC3=WCT*(C3(43)-C3(28))
2705
           CC4=WCT*(C4(43)-C4(28))
2710
           GOTO 4
2715 C**** WRONG SEGMENT IDENTIFICATION NUMBER IF PROGRAM ENTERS THIS SECTION
         1 PRINT 100,I
2720
2725
        10 CONTINUE
           DPH=(WHPU+WHCI) *554.0*TPLEN/VPLEN
2730
2735 C**** CALCULATE CONCENTRATION IN SEGMENTS BY INTEGRATION
2740
           IP=0
           DO 20 I=1,50
2745
2750
           LLG=LG(I)
2755
           IF (LLG.EQ.O) GUTU 20
2760
           IF(LLG.EQ.2) GOTU 21
2765
           CALL INTG1(I,C1(I),DC1(I),DELT)
           CALL INTG1(I,C2(I),DC2(I),DELT)
2770
           CALL INTG1(I,C3(I),DC3(I),DELT)
2775
           CALL INTGI(I,C4(I),DC4(I),DELT)
2780
2785
           GOTO 20
        21 TAU=M(I)/W(I)
2790
2795
            TIM=TIME
2800
           DEL=DELT
2805
           IF (TAU.GT.TIME) TAU=TIME
2810
           IP=IPI(I)
           CALL PIPE(TIM, DEL, TAU, IP, FX1, FX2, FX3, FX4)
2815
           CALL PIPE (TIM, DEL, TAU, 10, X1, X2, X3, X4)
2820
2825
           S1(I) = -(X1 + RR1)/2.*FX1
           S2(I)=-R3*FX2
2830
           S3(I)=-S2(I)
2835
           S4(I) = -(S1(I) + S2(I)) *0.5
2840
           C1(I)=FX1+S1(I) *TAU
2845
2850
           C2(I)=FX2+S2(I)*TAU
2855
           C3(I)=FX3+S3(I)*TAU
2860
           C4(I)=FX4+S4(I) *TAU
2865
           IF(C1(I).LE.0.0) C1(I)=0.0
           IF(C2(I).LE.0.0) C2(I)=0.0
2870
           IF(C3(I).LE.0.0) C3(I)=0.0
2875
```

```
2880
            IF(C4(I).LE.0.0) C4(I)=0.0
2885
        20 CONTINUE
            CALL INTG1 (1, PH, DPH, DELT)
2890
2895
            RETURN
        100 FORMAT(1H1,///1H ,20('*'),' ERROR IN SEGMENT IDENTIFICATION NUMBER
2900
           C, CHECK LG(',I2,') ',20('*'))
2905
2910
            END
2915
2920 C----
2925 C
                                                                                    C
                                                                                    C
2930 C
            SUBROUTINE INTG.
                                                                                    C
            IN THIS SUBROUTINE THE DERIVATIVES OF THE SYSTEM
2935 C
            VARIABLES WILL BE INTEGRATED USING EULER INTEGRATION METHOD
2940 C
                                                                                    00000
2945 C
            PARAMETERS:
2950 C
                  I - INDEX (FUR FUTURE USE)
2955 C
                  Y - VARIABLE VALUE TO BE INTEGRATED
                 DY - DERIVATIVE OF VARIABLE
2960 C
                                                                                    C
2965 C
                 DT - DELT - TIME INCREMENT
2970 C
                                                                                    C
2975 C--
2980
2985
            SUBROUTINE INTG1(I, Y, DY, DT)
2990 C
2995
            Y = Y + DY * DT
            RETURN
3000
            END
3005
3010
3015 C----
3020 C
                                                                                    C
3025 C
            SUBROUTINE PRIT.
                                                                                    00000
3030 C
            IN THIS SUBROUTINE THE RESULTS ARE BEING PRINTED
3035 C
            PERAMETER IPZ =
3040 C
                              1 PRINT INITIAL CONDITIONS
3045 C
                              2 PRINT A LINE OF SELECTED RESULTS EVERY
3050 C
                                JTP TIME STEPS
                                                                                    Ç
3055 C
                              3 PRINT FINAL MAP
3060 C
3065 C-
3070
3075
            SUBROUTINE PRIT(IPZ)
3080 C**** THIS ROUTINE WILL PRINT CONCENTRATION AT ALL SEGMENTS AT TIME T.
            COMMON /BLK/ L,A,M,C1,C2,C3,C4,LG,WS,WCT,WT1,WT2,WT3,WT4,WEX,TEMP,
3085
3090
           C FINTIM, RUNA, DTMIN, DTMAX, S1, S2, S3, S4, JT, KS, TPR, IQ, ICT, W, JCT,
3095
           C WR, WA, WX, WB, WC, WD, WE, Q, TQ, TX, QS, PDIS, PH, PA, K1, K2, K3, K4, R1, R2, R3,
3100
            WHCT, WHPU, TPLEN, VPLEN, IC, TPL, CHNA, RR1, QX, QXT, QHT, C1SAT, BETA,
3105
            ALFA, TMM, NPICT, NGRAF, NVECT, NAME, IPI, NUDET, NODE, NTYPE,
3110
           C TLAG, CDET, TDLE, C3SAT, PDEL, FIGTTL, PTDL, KH
3115
            COMMON /LOG/ TITLE, PRT1, PRT2, PRT3, PRT4, PRT5
            COMMON /DUB/ TIME, DELT, DC1, DC2, DC3, DC4, ABSC
3120
3125
            REAL*4 L(50), A(50), M(50), C1(50), C2(50), C3(50), C4(50), W(50)
3130
            REAL*4 S1(50),S2(50),S3(50),S4(50),Q(8),TQ(8),TX(8),QS(50)
3135
            REAL *4 K1, K2, K3, K4, KS, TITLE (18), TLAG (7), CDET (7), TDLE (7)
3140
            REAL*8 DC1(50),DC2(50),DC3(50),DC4(50),TIME,DELT,ABSC(4,10)
```

```
3145
           LOGICAL PRT1, PRT2, PRT3, PRT4, PRT5
3150
           DIMENSION LG(50), IQ(8), IC(8), ICT(8), NGRAF(10), NVECT(10,5),
          C NAME(10,15), IPI(50), NODE(7), NTYPE(7), FIGTTL(15,10)
3155
3160
           DIMENSION CHX(10)
           DATA JPR, JTP, JTI/1, 0, 0/
3165
3170
           TIM=TIME
3175
           GOTU (10,20,30), IPZ
3180
        10 PRINT 300, TITLE
3185
           PRINT 130
           PRINT 140, (I,LG(I),L(I),A(I),M(I),W(I),QS(I),I=1,50)
3190
           PRINT 300, TITLE
3195
           PRINT 100
3200
3205
        22 PRINT 110 ,TIME, JT, FINTIM, DELT, DTMIN, DTMAX, TPR, TPL
3210
           GOTO 21
        30 PRINT 300 TITLE
3215
           PRINT 120
3220
           GOTO 22
3225
        20 IF (ABS(TIM-JPR*TPR).GT.DELT*0.3) GOTO 90
3230
           JPR=JPR+1
3235
           PRINT 170, TIME, JT
3240
        21 PRINT 180, PH, CHNA, WHPU, WHCT, RR1
3245
           PRINT 190
3250
           PRINT 200,(I,LG(I),DC1(I),DC2(I),DC3(I),DC4(I),S1(I),S2(I),S3(I),S
3255
3260
          C4(I),C1(I), C2(I),C3(I),C4(I),I=1,50)
3265
        25 PRINT 300 TITLE
3270
            IF(IPZ.EQ.3) GOTO 99
           PRINT 230, (ICT(I), I=1,8)
3275
           JTP=0
3280
           JTI=0
3285
        90 JTI=JTI+1
3290
           IF (JTI.LT.JCT) GOTU 99
3295
3300
           JTI=0
3305
           JTP=JTP+1
3310
           DO 91 I=1,8
        91 CHX(I)=(0.5*C1(ICT(I))+C4(ICT(I)))*2.0166/(453.6*1E-6)
3315
           PRINT 220, JT, TIME, PH, QX, QXT, QHT, ALFA, (CDET(I), I=1,4), (CHX(I), I=2,8
3320
3325
          ( )
            IF(JTP.GT.50) GOTO 25
3330
        99 RETURN
3335
       100 FORMAT(' *** INITIAL CONDITIONS ***'//)
3340
                                                    =', I10, ' FINTIM =', F10.2,
                               =',F10,2,' JI
3345
       110 FORMAT(' TIME
                                             =',F10.5,' DTMAX =',F10.4/
                         =',F10.4,'
                                      DIMIN
3350
           C
                 DELT
                                       TPL
                                              =',F10.2)
3355
              . TPR
                          =1,F10.2,1
       120 FORMAT(' *** SIMULATION TERMINATED ***'/)
3360
                        SEGM TYPE', 7X, 'SEGMENT PARAMETERS'/
       130 FORMAT(
3365
                                                                   LEAK (MOL/SEC'/)
                    LENGHT
                                CRUSS-AREA
                                              MASS
                                                          FLOW
3370
           C 10x,
       140 FORMAT(13,2H *,13,2X,1P5E11.3)
3375
       190 FORMAT (1HO, ' SEGM TYPE', 7X, 'SEGMENT DERIVATIVES MOL-SEC-LBS', 18X,
3380
           C'SOURCE IN (MOL/SEC)',19X,'CONCENTRATION IN (MOL/LIB)'/
3385
                                                                 S1-NAH
                                                                            S2-NAOH
                                              DC3
                                                       DC4
3390
              10X.
                       DC1
                                    DC 5
                                                                     C4-H2'/)
                                                 CZ-NAUH C3-NAZO
                S3-NA20
                             S4-H2
                                      C1-NAH
3395
       200 FORMAT (13,2H *,13,2x,1P12E10.3)
3400
       170 FORMAT (1H1, ' SOURCES AND CONCENTRATIONS FUR TIME=',F7.2,' SEC',
3405
```

```
C ' AT ',15, '-TH TIME STEP')
3410
       180 FORMAT( ' HYDROGEN PARTIAL PRESSURE IN COVER'
3415
          C ,' GAS PH=',F10.3,' MM-HG',10X,'SIEVERTS EQUILIBRIUM H2 IN NA CHN
3420
          CA=',E12.4,' (MOL/LB)'/' H2 LEAKING FROM THE PUMP TO '
3425
           ,'COVER WHPU= ',E12.4,' MOLS',11X,'H2 TO GAS PLENUM IN',
3430
            ' CCTL VESEL WHCT=',E11.4,' MOL'/' HYDRID DISSOCIATION RATE RR1='
3435
          C .11X,E12.4, SEC-1')
3440
       210 FURMAT (10E12.4)
3445
       220 FORMAT(1X, 15, F6.1, F7.4, 15F7.3)
3450
       230 FORMAT(' STEP TIME PH-(MM) H20-LK TOT LK TOT H2
                                                               ALFA
                                                                      DICTRI DIC
3455
          CTR2 DTCTR3 DTCTR4 TOTAL HYDROGEN CONCENTRATION IN (PPM) AT NODE #
3460
3465
          C: (1, 1/42x, 12, 33x, 6(12, 5x), 12)
       300 FORMAT(1H1,20('*'),2X,18A4,2X,20('*'))
3470
3475
           END
3480
3490 C
           SUBROUTINE SPLOT.
3495 C
           IN THIS ROUTINE DATA WILL BE STURED IN FILE 20 EVERY TPL
                                                                               C
3500 C
                                                                               č
           PARAMETER IIP =
3505 C
                                                                               C
                            1 , INITIAL ENTRY
3510 C
                                                                               C
                            2 , TIME STEP ENTRY, VALUES STORED
3515 C
                                                                               C
                            3 , FINAL ENTRY, VALUES RETREIVED AND
3520 C
                                                                               C
                                  PRINT-PLOTTED
3525 C
                                                                               C
3530 C
3535 C-----
3540
3545
           SUBROUTINE SPLOT(IIP)
3550 C**** THIS SUBROUTINE WILL STORE DATA OF SPECIFIED CONCENTRATION POINTS
3555 C**** AT PREDETERMAINED SEGMENTS TO BE PLUTTED LATER ON THE TEXTRONIC
3560 C**** TERMINAL. DATA ARE WRITEN INTO CCTX.DATA=FT20.F001
           COMMON /BLK/ L,A,M,C1,C2,C3,C4,LG,WS,WCT,WT1,WT2,WT3,WT4,WEX,TEMP,
3565
3570
          C FINTIM, RONA, DTMIN, DTMAX, S1, S2, S3, S4, JT, KS, TPR, IQ, ICT, W, JCT,
          C WR, WA, WX, WB, WC, WD, WE, Q, TQ, TX, QS, PDIS, PH, PA, K1, K2, K3, K4, R1, R2, R3,
3575
          C WHCT, WHPU, TPLEN, VPLEN, IC, TPL, CHNA, RR1, QX, QXT, QHT, C1SAT, BETA,
3580
3585
          C ALFA, TMM, NPICT, NGRAF, NVECT, NAME, IPI, NUDET, NODE, NTYPE,
3590
          C TLAG, CDET, TDLE, C3SAT, PDEL, FIGTTL, PTDL, KH
3595
           COMMON /LUG/ TITLE, PRT1, PRT2, PRT3, PRT4, PRT5
3600
           COMMON /DUB/ TIME, DELT, DC1, DC2, DC3, DC4, ABSC
3605
           REAL *4 L(50), A(50), M(50), C1(50), C2(50), C3(50), C4(50), W(50)
3610
           REAL*4 $1(50),$2(50),$3(50),$4(50),$(8),$$(8),$$(8),$$(50)
3615
           REAL * 4 K1, K2, K3, K4, KS, TITLE (18), TLAG (7), CDET (7), TDLE (7)
3620
           REAL*8 DC1(50),DC2(50),DC3(50),DC4(50),TIME,DELT,ABSC(4,10)
3625
           LOGICAL PRT1, PRT2, PRT3, PRT4, PRT5
3630
           DIMENSION LG(50), IQ(8), IC(8), ICT(8), NGRAF(10), NVECT(10,5),
3635
          C NAME(10,15), IPI(50), NODE(7), NTYPE(7), FIGITL(15,10)
3640
           DIMENSION CCC(10), VMX(55), VECT(55), LINE(121), IL(5), ILX(5),
3645
            DYD(6), IP(5), YZ(4), YW(4), VEPL(250,5), VT1M(250)
3650
           LOGICAL L1
3655
           DATA JFL/0/, VMX/55*0./, YZ/0.15,0.2,0.5,1.0/, YW/3.,4.,5.,5./
3660
           DATA IPO/' '/, ICR/'I'/, IP/', ', '*', '+', ', '#'/, IDLR/'$'/
3665
           TIM=TIME
3670
           GOTO (10,20,30), IIP
```

```
3675
        10 REWIND 20
        20 IF (ABS(TIM-JPL*TPL).GT.DELT*0.3) GOTO 99
3680
            JPL=JPL+1
3685
        21 DO 5 I=1.8
3690
         5 CCC(I)=(0.5*C1(IC(I))+C4(IC(I)))*2.0166E+6/453.6
3695
3700
           WHPT=WHPU+WHCT
3705
           EXSC=CHNA/(0.5*C1(27)+C4(27))
3710
            VECT(1)=TIM
            VECT(2)=ALFA
3715
            VECT(3)=QX
3720
            VECT(4)=QXT
3725
3730
            VECT(5)=WHPT
            VECT(6)=EXSC
3735
3740
            VECT(7)=PH
3745
            VECT(8)=QHT
3750
            DO 11 I=1, NUDET
        11 VECT(8+I)=CDET(I)
3755
3760
            I = 0
3765
            DO 12 I1=16,51,5
3770
            I = I + 1
3775
            VECT(I1)=C1(IC(I))
            VECT([1+1)=C2([C([))
3780
            VECT(I1+2)=C3(IC(I))
3785
            VECT(I1+3)=C4(IC(I))
3790
            VECT(I1+4)=CCC(I)
3795
        12 CONTINUE
3800
            WRITE (20) VECT
3805
3810
            DO 14 I=1.55
        14 IF (VECT(I).GT.VMX(I)) VMX(I)=VECT(I)
3815
3820
            GOTO 99
        30 PRINT 100, JPL
3825
            DO 26 N=1, NUDET
3830
3835
            NN=8+N
        26 PRINT 170, NN, N, NTYPE(N), NODE(N)
3840
3845
            1=0
            DO 25 JPJ=16,51,5
3850
3855
            JPM=JPJ+4
3860
            I = I + 1
            PRINT 110, (J1, IC(1), J1=JPJ, JPM)
3865
        25 CONTINUE
3870
            PRINT 120, (I, VMX(I), I=1,55)
3875
3880 C
3885 C*** THIS SECTION PREPARES PRINTPLOT
            DO 70 NP=1, NPICT
3890
3895
            NG=NGRAF (NP)
3900 C*** FIND MAXIMUM VALUE IN PRESENT PICTURE
3905
            YS=0.
3910
            DO 60 N=1,NG
            ILX(I)=0
3915
            N1=NVECT(NP,N)
3920
            IF (VMX(N1).GT.YS) YS=VMX(N1)
3925
        60 CUNTINUE
3930
3935 C*** SELECT SCALE FOR GRAPHIC PICTURE
```

```
3940
           DO 61 I=1,11
3945
            YM=10.**(I-6)
            DO 63 II=1,4
3950
3955
            YSC=YZ(1I) *YM
3960
            DYS=YSC/YW(II)
3965
            IF (YS.LT.YSC)GOTO 62
3970
        63 CONTINUE
3975
        61 CONTINUE
3980
        62 IDY=DYS/YSC*120.+0.001
3985
            PRINT 130, TITLE
3990
            PRINT 180, (FIGTTL(I, NP), I=1, 15)
3995
            PRINT 140, NP, NG
            DO 64 N=1.NG
4000
4005
            N1=NVECT(NP,N)
            PRINT 150,N,N1,IP(N),VMX(N1),(NAME(NP,3*(N-1)+J),J=1,3)
4010
4015
        64 CONTINUE
            PRINT 220, (ABSC(I,NP), I=1,4)
4020
4025 C*** PRINT SCALES
4030
            IS=0
4035
            DO 65 I=1,121, IDY
            DYD(IS+1)=DYS*IS
4040
4045
            IS=IS+1
4050
        65 CONTINUE
4055
            LAB=IDY/10.-1
4060
            GOTO (66,67,68), LAB
4065
         66 PRINT 166, (DYD(I), I=1, IS)
4070
            GOTO 69
4075
         67 PRINT 167, (DYD(I), I=1, IS)
4080
            GOTO 69
4085
        68 PRINT 168, (DYD(I), I=1, IS)
        69 REWIND 20
4090
4095 C**** SET PROPER SIGNAL CHARACTERS INTO LINE
4100
            PRINT 210
4105
            DO 50 J=1.JPL
            READ (20) VECT
4110
4115
            VTIM(J)=VECT(1)
4120
            DO 52 N=1,NG
4125
            N1=NVECT(NP,N)
4130
            VEPL (J, N) = VECT (N1)
4135
            IL(N)=VECT(N1)/YSC*120
4140
            IF(IL(N).LE.0) IL(N)=1
4145
         52 CONTINUE
4150
            DO 54 I=2,120
4155
         54 LINE(I)=IPO
            DO 56 I=1,121,IDY
4160
4165
         56 LINE(I)=ICR
4170
            IF (VECT (3).EQ.0.0) GOTO 53
            DO 73 I=2,8
4175
4180
         73 LINE(I)=IDLR
4185
         53 DO 51 N=1.NG
4190
            IF (NG.NE.1) GOTO 59
4195
            IF(IL(N).EQ.ILX(N)) GUTO 59
            IF(IL(N).LT.ILX(N)) GUTU 57
4200
```

```
4205
           I1=ILX(N)+1
           I2=IL(N)
4210
           GOTO 58
4215
        57 I1=IL(N)
4220
           I2=ILX(N)-1
4225
4230
        58 DO 55 I=I1.12
4235
        55 LINE(I)=IP(N)
        59 LINE(IL(N))=IP(N)
4240
           ILX(N)=IL(N)
4245
        51 CONTINUE
4250
           PRINT 200, VECT(1), LINE
4255
        50 CONTINUE
4260
4265
           PRINT 211
4270
           IF (PRT5) CALL PLOTER (JPL, NP, NG, VEPL, VTIM, YS, TIM, YSC, DYS, FIGTTL,
             ABSC, NAME, NPICT)
4275
        70 CONTINUE
4280
        99 RETURN
4285
       100 FURMAT (1H0,3(/),1H ,20('*'),16,' RECURDS ARE WRITEN FOR PLUTTING
4290
4295
             ',20('*')//10x,'#01 TIME (SEC).'/10x,'#02 ALFA'/10x,
4300
            '#03 LEAK H20 (MOL/SEC).'/10x,'#04 TUTAL H20 LEAK (MOL)'/
4305
          C 10x, 1#05 H2 FLOW TO PLENUM (MOL/SEC) 1/10x,
            1#06 EXCESS H2 IN COVER GAS OVER NODE 271/10X,
4310
                   H2 PARTIAL PRESSURE IN COVER GAS (MM-HG) 1/10%.
4315
            #07
4320
            1#08
                  TOTAL HYDRUGEN IN CCTL SYSTEM (MUL)'/)
       110 FORMAT(' CONC (MOL/LB) #', I2, '
                                             C1(', I2, ')-NAH
                                                                #1,I2,
4325
                                  #',I2,' C3(',I2,')-NA20
                                                                #1,I2,1
                 HOAN-(',12,')=NAOH
                                                                          C4(1
4330
          C
              . I2, ')-H2
                              #',I2,'
                                      DETECTABLE H IN NODE ', 12, ' (PPM)')
4335
       120 FORMAT('OTHE APPROPRIATE MAXIMUM VALUES OF THE VARIABLES ARE'/
4340
4345
          C 11(11x,5(4x,'#',I2,1PE12.3)/))
       130 FORMAT(1H1,20('*'),18A4,20('*'))
4350
       140 FORMAT(' PICTURE #', I2, ' HAS ', I2, ' GRAPHS')
4355
4360
       150 FURMAT(' GRAPH #', I2, ' IS VECT(', I2, '), SYMBOL IS ', A1, ' MAX=',
4365
          C E11.4,3X,3A4)
4370
       166 FORMAT(1X,F10.1,5(14X,1PE10.3))
       167 FORMAT(1X,F10.1,4(20X,1PE10.3))
4375
       168 FORMAT(1X,F10.1,3(30X,1PE10.3))
4380
       170 FORMAT(10x, '#', 12, ' RESPONSE OF DETECTOR ', 12, ' IN (PPM). TYPE'
4385
          C .'IS ',II,' CONNECTED TO NODE ',IZ)
4390
4395
       180 FORMAT (40x, 15A4)
4400
       200 FORMAT (1X, F7.2, 3x, 121A1)
4405
       210 FORMAT(4x, 'TIME', 3x, 121('_'))
       211 FURMAT(11X,121('-'))
4410
4415
       220 FORMAT (1H0, 40X, 4A8)
4420
           END
4425
4430
4435 C-----
           SUBROUTINE PIPE.
4440 C
           IN THIS ROUTINE PIPE FUNCTION ARE STORED. PIPE LAG FUNCTIONS
4445 C
           ARE THEN CALCULATED BY LINEAR INTERPOLATION BETWEE THE TWO
4450 C
           VALUES CLUSEST TO TIME TAU.
4455 C
           THE PARAMETERS ARE :
4460 C
                                                                                 C
                 TIME - CURRENT SIMULATION TIME
4465 C
```

```
CCTL.FORT
```

```
DELT - TIME STEP INCREMENT
4470 C
                 TAU - TIME LAG FUR WHICH PIPE FUNCTION IS REQUIRED
4475 C
                       PIPE FUNCTION NUMBER (1-9)
4480 C
                 FX1, FX2, FX3, FX4 - CACULATED PIPE FUNCTIONS FOR TIME-TAU
4485 C
4490 C
                            UR UPDATE VALUES IF TAU=0.0
4495 C
4500 C-
4505
            SUBROUTINE PIPE(TIME, DELT, TAU, IP, FX1, FX2, FX3, FX4)
4510
4515
            COMMON /LUG/ TITLE, PRI1, PRT2, PRT3, PRT4
            LOGICAL PRT1, PRT2, PRT3, PRT4, PRT5
4520
             DIMENSION F(10,4,100), CONCN(4), T(100), TITLE(18)
4525
4530
             LOGICAL L1,L2
             DATA L1, L2/2*. FALSE. /, CONCN/'NAH ', 'NAUH', 'NA20', 'H2
4535
4540
            IF(L1) GOTO 2
4545
            L1=.TRUE.
            DO 4 I=1,100
4550
4555
            T(I) = (I - 100) * DELT * 10.0
4560
            DO 3 IP=1.9
            F(1P,1,1)=FX1
4565
4570
            F(IP,2,1)=FX2
4575
            F(IP,3,I)=FX3
4580
            F(IP, 4, 1) = F \times 4
4585
          3 CONTINUE
4590
          4 CONTINUE
4595
            GOTO 99
          2 IF(L2) GOTO 5
4600
4605
            L2=.TRUE.
4610
            DO 1 I=1,100
4615
            F(10,1,I) = FX1
4620
            F(10,2,I)=Fx2
4625
            F(10,3,I) = F \times 3
            F(10,4;1)=FX4
4630
4635
          1 CONTINUE
4640
            GOTO 91
4645 C**** UPDATE THE PIPE FUNCTIONS FOR PRESENT TIME
4650
          5 IF(TAU.NE.O.O) GOTO 10
            IF(TIME.EQ.T(100)) GOTO 22
4655
            DO 8 I=1,99
4660
4665
          8 T(I)=T(I+1)
4670
            T(100)=TIME
4675
         22 DO 20 K=1,4
4680
            DO 20 I=1,99
4685
         20 F(IP,K,I)=F(IP,K,I+1)
4690
            F(IP, 1, 100) = FX1
4695
            F(IP,2,100)=FX2
4700
            F(IP, 3, 100) = F \times 3
4705
            F(IP,4,100)=FX4
4710
            GOTO 99
4715 C**** SEARCH FOR PIPE OUTPUT CONCENTRATION AT PRESENT TIME (TIME-TAU)
4720
        10 J=0
4725
            DEL=TIME-T(100)
4730
            IF (TAU.GT.DEL) GOTO 15
```

C

C

C

C

```
4735
           J=100
4740
           TDEL=DEL-TAU
           IF (ABS(TDEL).LT.0.001) GOTO 13
4745
           DTD=(T(100)-T(99)+TDEL)/(T(100)-T(99))
4750
4755
           DP=DTD
4760
           DM=1.-DTD
4765
           GOTO 12
4770
        15 TOEL=TIME-TAU
4775
           IF(TDEL.LT.T(1)) GOTO 90
4780
        9 J=J+1
           IF (ABS(T(J)-TDEL).LE.0.001) GOTO 13
4785
           IF(T(J).GE.TDEL) GOTO 11
4790
4795
           GOTO 9
4800
        11 DT=T(J)-T(J-1)
4805
           DTU=T(J)-TDEL
4810
           DP=DTD/DT
4815
           DM=1.-DP
4820
        12 FX1=F(IP,1,J-1)*DM+F(IP,1,J)*DP
4825
           IF(IP.EG.10) GOTO 99
4830
           FX2=F(1P,2,J=1)*DM+F(IP,2,J)*DP
4835
           FX3=F(IP,3,J=1)*DM+F(IP,3,J)*DP
4840
           FX4=F(IP,4,J-1)*DM+F(IP,4,J)*DP
           GOTO 99
4845
4850
        13 FX1=F(IP,1,J)
           FX2=F(IP,2,J)
4855
4860
           FX3=F(IP,3,J)
4865
           FX4=F(IP,4,J)
           GOTO 99
4870
4875 C*** ERROR DUTPUT
4880
        91 IF(PRT1) GOTU 92
4885
           GOTU 99
4890
        90 PRINT 100, TIME, TAU, IP, T(1)
        92 PRINT 110, ((CUNCN(K), J, T(J), (F(IP, K, J), IP=1, 10), J=1, 100), K=1, 4)
4895
4900
        99 RETURN
       100 FORMAT(1H1,1H ,125('*')/' ERRUR AT TIME=',F10.4/
4905
          C ' PIPE DELAY IS TAU=',F10.4,'PIPE IS SEGMENT NUMBER ',I3/
4910
           ' FIRST VALUE IN PIPE SEGMENT IS GIVEN AT TIME=',F10.4/1H ,132('*
4915
          C'))
4920
       110 FORMAT ('1'/' PIPE FUNCTIONS'/' MAT INDX TIME
                                                                 SECT=1',10x,'3
4925
          C',10x,'23',10x,'27',9x,'29',9x,'6',9x,'25',9x,'NU',9x,'NU',6x,'RR1
4930
          C,PH,CHNA'/(1X,A4,I5,OPF12.5,1P10E11.3))
4935
4940
       200 FORMAI (1x, 3E12.4, 216, 4E12.4)
4945
4950
4955 C----
4960 C
                                                                                C
4965 C
           SUBROUTINE DETECT.
           IN THIS RUUTINE THE DIECTOR RESPONSE IS CUMPUTED. THREE
4970 C
           TYPES ARE ACCOUNTED FOR: HYDRUGEN IN NA, HYDROGEN IN COVER
4975 C
           GAS, AND OXYGEN. THE RESPONSE IS GIVEN IN PPM WEIGHT FOR THE
4980 C
           SOLUTION AND PPM-VOLUME FOR THE COVER GAS.
4985 C
                                                                                C
4990 C
```

```
5000
            SUBROUTINE DETECT
5005
5010 C
            CUMMON /BLK/ L.A,M,C1,C2,C3,C4,LG,WS,WCT,WT1,WT2,WT3,WT4,WEX,TEMP,
5015
           C FINTIM, RUNA, DIMIN, DIMAX, $1, $2, $3, $4, JT, KS, TPR, IQ, ICT, W, JCT,
5020
           C WR, WA, WX, WB, WC, WD, WE, Q, TQ, TX, QS, PDIS, PH, PA, K1, K2, K3, K4, R1, R2, R3,
5025
           C WHCT, WHPU, TPLEN, VPLEN, IC, TPL, CHNA, RR1, QX, QXT, QHT, C1SAT, BETA,
5030
           C ALFA, TMM, NPICT, NGRAF, NVECT, NAME, IPI, NUDET, NODE, NTYPE,
5035
           C TLAG, CDET, TDLE, C3SAT, PDEL, FIGTTL, PTDL, KH
5040
            COMMON /LOG/ TITLE, PRT1, PRT2, PRT3, PRT4, PRT5
5045
            CUMMON /DUB/ TIME, DELT, DC1, DC2, DC3, DC4, ABSC
5050
            REAL*4 L(50), A(50), M(50), C1(50), C2(50), C3(50), C4(50), W(50)
5055
            REAL *4 $1(50), $2(50), $3(50), $4(50), Q(8), TQ(8), TX(8), Q$(50)
5060
            REAL*4 K1,K2,K3,K4,KS,TITLE(18),TLAG(7),CDET(7),TDLE(7)
5065
            REAL *8 DC1(50), DC2(50), DC3(50), DC4(50), TIME, DELT, ABSC(4,10)
5070
            LOGICAL PRT1, PRT2, PRT3, PRT4, PRT5
5075
            DIMENSION LG(50), IQ(8), IC(8), ICT(8), NGRAF(10), NVECT(10,5),
5080
           C NAME(10,15), IPI(50), NODE(7), NTYPE(7), FIGTTL(15,10)
5085
            TIM=TIME
5090
5095
            DEL=DELT
             DO 10 N=1, NUDET
5100
5105
            LTP=NTYPE(N)
5110
            IF(LTP.EQ.3) GOTO 15
            N1=NODE(N)
5115
5120
            IP=IPI(N1)
5125
            TAU=M(N1)/W(N1)+TLAG(N)
            IF (TAU.GT.TIME) TAU=TIME
5130
            CALL PIPE(TIM, DEL, TAU, IP, FX1, FX2, FX3, FX4)
5135
            CALL PIPE(TIM, DEL, TAU, 10, X1, X2, X3, X4)
5140
5145
            SD1=-(X1+RR1)/2.*FX1
5150
            SD2=-R3*FX2
5155
            SD3=-SD2
            SD4 = -(SD1 + SD2) * 0.5
5160
5165
            CD1=(FX1+SD1*TAU)*1.0083E+6/453.6
5170
            CD2=(FX2+SD2*TAU)
            CD3=(FX3+SD3*[AU)*16.0E+6/453.6
5175
5180
            CD4=(FX4+SD4*TAU)*2.0166E+67453.6
5185
            GOTO 19
         15 CD4=PH*1.0E+6/(PH+PA)
5190
5195
         19 GOTO (20,30,40), LTP
5200 C*** HYDROGEN DETECTOR
5205
         20 DPP=(CD1+CD4-CDET(N))/TDLE(N)
5210
            CALL INTG1 (N, CDET (N), DPP, DELT)
5215
             GOTO 10
5220 C**** OXIGEN DETECTOR
         30 DPP=(CD3-CDET(N))/TDLE(N)
5225
5230
             CALL INTG1 (N, CDET (N), DPP, DELT)
5235
              GOTO 10
5240 C**** HYDROGEN GAS DETECTUR
5245
         40 OPP=(CD4-LDET(N))/TDLE(N)
5250
             CALL INTG1 (N, CDET (N), DPP, DELT)
5255 C**** OTHER TYPES OF DETECTORS
5260
         10 CONTINUE
```

C

C

C

```
99 RETURN
5265
5270
            END
5275
            SUBROUTINE PLOTER(J, NP, NN, X, T, YMX, TF, YSC, DYS, FIGTTL, ABSI, NAME,
5280
5285 C----
5290 C
5295 C
             SUBRUUTINE PLUTER
            IN THIS ROTINE A FIGURE ON THE CALCOMP PLOTTER IS PREPARED
5300 C
             PARAMRTERS ARE:
5305 C
5310 C
                             J - NUMBER OF POINTS IN VECTOR TO BE DRAWN
5315 C
                             NP - FIGURE NUMBER
5320 C
                             NN - NUMBER OF CURVES IN FIGURE
5325 C
                             X - VECTOR INCLUDING THE CURVES
5330 C
                             T - THE TIME VECTOR
5335 C
                             YMX - MAXIMUM VALUE OF VECTORS TO BE DRAVN
5340 C
                             TF - TOTAL/FINAL TIME OF THE PLOT
5345 C
                             YSC - SCALE OF THE ABSCISAE
5350 C
                             HEAD - FIGURE HEADING
5355 C
                             ABSC - ABSCISAE HEADING
5360 C
                             NAME - NAME OF CURVES - LEGEND
5365 C
5370 C----
5375
          DIMENSION x(250,5),T(250),HEAD(15),NAMS(3),TL(2),T1(250)
          C , Z(250), NAME(10,15), IPAK(200), FIGITL(15,10)
5380
5385
           REAL *8 ABSI(4,10), ABSC(4)
5390
           DATA KP/0/
5395
           TF5=TF/5.
5400
           TL(1)=TF/25.
5405
           TL(2)=TF5-TL(1)
5410
           TI=0.
5415
           Tx = TF
5420
           J1 = 1
5425
           J2=J
5426 C
5427 C**** INSERT ALL TITLES IN PROPER VECTORS FOR PLOTTER DRAWING
5430
           DO 1 I=1,15
5435
         1 HEAD(I)=FIGITL(I,NP)
5440
           00 2 1=1,4
5445
         2 ABSC(I)=ABSI(1,NP)
5450
           IF (NP.GT.1) GOTO 12
5455
           CALL STRTPL
5460
        12 KP=KP+1
           CALL BGNPL (KP)
5465
5470
           DO 17 N=1, NN
5475
           DO 16 K1=1,3
5480
           N3=(N-1) *3+K1
5485
        16 NAMS (K1) = NAME (NP, N3)
           CALL LINES (NAMS, IPAK, N)
5490
5495
           CONTINUE
     17
            CALL TITLE(1H ,-1, 'TIME(SEC)', 9, ABSC, 32, 8.,6.)
5500
           CALL HEADIN (HEAD, 100, 3, 1)
5505
5510
           CALL GRAF (TI, TF5, TX, 0.0, DYS, YSC)
5515
           UY=5.3-0.3*NN
```

```
5520
            CALL BLNK1 (5.0,7.8,UY,5.8,2)
5525
             CALL GRID(1,1)
             CALL FRAME
5530
5535
            DO 40 N=1, NN
5540
            DO 10 I=1,J
5545
            Z(I) = X(I,N)
5550
            CONTINUE
      10
5555
            I = 0
5560
            DO 42 J3=J1,J2
            I = I + 1
5565
5570
            Z(I) = Z(J3)
5575
            T1(1)=T(J3)
5580
         42 CONTINUE
5585
            05+N*S=MN
5590
             CALL CURVE(T1,Z,J,NM)
5595
       40
            CONTINUE
            CALL RESET ('BLNK1')
5600
            5.0+YU=5YU
5605
            CALL LEGEND (IPAK, NN, 5.2, UY2)
5610
             CALL ENDPL (KP)
5615
            IF(KP.LT.NPICT) GOTO 99
5620
             CALL DONEPL
5625
5630
         99 RETURN
5635
             END
5640 C-
5645 C
               BLOCK DATA
5650 C
               IN THIS ROUTINE DEFAULT AND OTHER INITIAL DATA ARE PLACED
5655 C
5660 C
5665 C
5670 C
5675
             BLUCK DATA
            COMMON /BLK/ L,A,M,C1,C2,C3,C4,LG,WS,WCT,WT1,WT2,WT3,WT4,WEX,TEMP
5680
           C FINTIM, RONA, DTMIN, DTMAX, S1, S2, S3, S4, JT, KS, TPR, IQ, ICT, W, JCT,
5685
           C WR, WA, WX, WB, WC, WD, WE, Q, TQ, TX, QS, PDIS, PH, PA, K1, K2, K3, K4, R1, R2, R3,
5690
5695
           C WHCT, WHPU, TPLEN, VPLEN, IC, TPL, CHNA, RR1, QX, QXT, QHT, C1SAT, BETA,
           C ALFA, TMM, NPICT, NGRAF, NVECT, NAME, IPI, NUDET, NODE, NTYPE,
5700
5705
           C TLAG, CDET, TDLE, C3SAT, PDEL, FIGTTL, PTDL, KH
            COMMUN /LOG/ TITLE, PRT1, PRT2, PRT3, PRT4, PRT5
5710
            COMMON /DUB/ TIME, DELT, DC1, DC2, DC3, DC4, ABSC
5715
            REAL*4 L(50),A(50),M(50),C1(50),C2(50),C3(50),C4(50),W(50)
5720
            REAL*4 S1(50),S2(50),S3(50),S4(50),Q(8),TQ(8),TX(8),QS(50)
5725
            REAL *4 K1, K2, K3, K4, KS, TITLE (18), TLAG (7), CDET (7), TDLE (7)
5730
            REAL*8 DC1(50),DC2(50),DC3(50),DC4(50),TIME,DELT,ABSC(4,10)
5735
            LOGICAL PRT1, PRT2, PRT3, PRT4, PRT5
5740
            DIMENSIUN LG(50), IQ(8), IC(8), ICT(8), NGRAF(10), NVECT(10,5),
5745
           C NAME(10,15), IPI(50), NODE(7), NTYPE(7), FIGTTL(15,10)
5750
5755 C**
                DEFAULT VALUES
            DATA BETA/0.001/,
5760
           C
                  C1SAT/1.418E-6/,
5765
           C
                  CDET/7*0.0/,
5770
           C
5775
                  DTMAX/1.0/,
           C
                  DIMIN/0.005/.
5780
```

```
JT/0/
5785
           DATA PDEL/0.01/,
5790
                  PRT1, PRT2, PRT3, PRT4, PRT5/5*. FALSE./,
           00000
5795
                  Q/8*0.0/,
5800
                  TIME/0.0/,
5805
                  TG/8*10.0/,
5810
                  TX/8*80.0/,
5815
                  WT1, WT2, WT3, WT4/4*0.0/
           C
5820
            END
5825
```

.

APPENDIX D

The Input Data; How to Run CCTL-DYSP

1. Title

The first line is a title of 72 characters and will be printed at the top of each output page.

2. INLIST

The data in this section are inserted in a free NAMELIST format. All the data are single variables or vectors, and should be placed between

 Δ &INLIST Δ * as a first card, and

A&END as the last card.

All the vectors can be input as whole vectors

$$x = a_1, a_2, ..., a_{50},$$

or single members; e.g.,

$$x(5) = a_5; x(7) = a_7.$$

In the first case, all elements of the vectors have to be supplied. (The variables can be input in any order.)

L(50) = CCTL segment length, in feet;

LG(50) = a logic variable, which determines the type of segment

= 0 the segment is excluded from the simulation

= 1 plenum mixing segment

= 2 pipe segment

= 3 plenum mixing with cover gas

= 4 multiple-entry mixing plenum

= 5 multiple-entry mixing plenum with cover gas;

A(50) = segment cross section area, in ft^2 ;

C1(50) = NaH concentration, in ppm;

C2(50) = NaOH concentration, in ppm;

 $C3(50) = Na_2O$ concentration, in ppm;

C4(50) = hydrogen concentration, in ppm.

 $^{*\}Delta$ indicates a space.

Only the first value for each of C1(1), C2(1), and C3(1), and C4(1) has to be input to calculate the initial distribution in the system.

Q(8) = leak at the Ith injection point, in lb/sec;

QT(100) = normalized time-dependent leak function;

TQ(8) = time, in seconds, when the leak at node I starts;

TX(8) = time (in seconds) when the leak at node I is terminated;

IQ(8) = CCTL node number at which leak might occur, i.e., nodes at which nozzles were installed:

IC(8) = node numbers for which detailed concentration information will be stored in CCTX.DATA file for future plotting; the nodal information stored includes C1, C2, C3, C4, and detectable hydrogen concentrations, in ppm;

3. PARM

The data in this section are system parameters and are inserted in a free NAMELIST format. These are scalar variables. If they will not be included in the input stream, the default value (usually 0) will be assumed by the program. The parameters should be placed between

∆&PARM∆ as the first card, and

 $\Delta\& {\rm END}$ as the last card, and should be separated by commas.

TEMP = sodium temperature, in °F;

WS = total sodium flow, in gal/min;

WCT = flow through the cold trap, in gal/min;

WT1 = flow toward the detectors from node 6;

WT2 = to be determined;

WT3 = flow toward the detectors from node 23, in gal/min;

WT4 = flow toward the detectors from node 25, in gal/min;

WEX = sodium leak between nodes 3 and 22, in gal/min;

PDEL = maximum permitted change in node 23 for pipe update;

PTDL = maximum time interval at which pipe is updated;

PRT1 = (Logical) if TRUE, initial pipe-function distribution will be printed;

PRT5 = (Logical) if TRUE, time-dependent results arranged for print-plot also will be plotted on the CALCOMP plotter;

TCLT = Cold-trap temperature;

PH = Hydrogen partial pressure in cover gas, in mm Hg;

PA = Argon partial pressure in cover gas, in mm Hg;

FINTIM = simulation time, in seconds:

DELT = single integration time step, in seconds;

DTMIN = minimum permitted time step, in seconds;

DTMAX = maximum permitted time step, in seconds;

VPLEN = total gas plenum volume, in ft³;

TPR = printing time interval for complete concentration map, in seconds;

TPL = time intervals at which an entry for plotting is calculated, in seconds:

JCT = number of time steps between two consecutive printings of detectable hydrogen concentration and meter readings (a single line is printed every JCT time steps);

K1 = fraction of water leak to Na + $H_2O\rightarrow NaOH + \frac{1}{2}H_2$, reaction;

K2 = fraction of water leak to 2Na + H₂O→NaOH + NaH, reaction;

K3 = fraction of water leak to 4Na + $H_2O\rightarrow 2NaH$ + Ha_2O , reaction;

K4 = fraction of water leak to 2Na + H₂O→Na₂O + H₂, reaction;

R1 = rate of hydrogen disengagement from liquid sodium to cover gas, in sec⁻¹;

BETA = cold-trap static efficiency;

R3 = rate of NaOH dissociation, in sec⁻¹.

4. DTCTR

This section contains a list of parameters describing the detectors monitoring CCTL. Parameters are inserted in free NAMELIST format and should be placed between

∆&DTCTR∆ as the first card, and

 $\Delta\& {\rm END}$ as the last card, and should be separated by commas.

NUDET = number of detectors in present simulation (maximum is 7);

NODE(7) = the node number to which detector is attached;

NTYPE(7) = type of detector

1 = hydrogen detector in sodium

2 = oxygen detector in sodium

3 = hydrogen-gas detector in cover gas;

TDLE(7) = diffusion time constant for the nickel membrane, in seconds:

TLAG(7) = time lag between detector sample line inlet and detector, in seconds.

5. Print-Plot Data

These data will direct the printing of time-dependent plots. If TPRS is true, then graphic output on a CALCOMP plotter also will be generated. The data must be input in the formats described below.

CARD 1 = The first card can be any comment of up to 80 characters.

CARD 2 = NPICT; FORMAT(I2), number of pictures to be printed.

CARD 3 = NGRAF(10); FORMAT(10(I2, 1X)), NPICT numbers each giving the number of curves to be drawn in a picture.

CARD 4-I = NVECT(10):FORMAT(10(I2, 1X))

These numbers from 2 to 55 give the position of the variables to be drawn in the 55-place vector VECT as written in the CCTX.DATA file.

#1: time (sec)

#2: ALFA defined by (C1(I) + C2(I))/average total hydrogen concentration in the loop

#3: water leak (mol/sec)

#4: total water leak (mol)

#5: hydrogen flow to the cover gas (mol/sec)

#6: excess hydrogen in cover gas over node 27 (mm Hg)

#7: hydrogen partial pressure in cover-gas plenum (mm Hg)

#8: total hydrogen in the CCTL system (mol)

#9-15: detector readings (ppm)

#16: NaH concentration in the IC(1)th node (mol/lb)

#17: NaOH concentration in the IC(1)th node (mol/lb)

```
#18: Na<sub>2</sub>O concentration in the IC(1)th node (mol/lb)
#19: hydrogen concentration in the IC(1)th node (mol/lb)
#20: detectable hydrogen concentration in the IC(1)th node (ppm)
#21-25: same as #16-20, but for IC(2)th node
#26-30: same as #16-20, but for IC(3)th node
#31-35: same as #16-20, but for IC(4)th node
#36-40: same as #16-20, but for IC(5)th node
#41-45: same as #16-20, but for IC(6)th node
#46-50: same as #16-20, but for IC(7)th node
```

#51-55: same as #16-20, but for IC(8)th node

- CARD 5-I = NAME(10):FORMAT(5(3A4, 1X)): names to be assigned to each curve; must be terminated by \$
- CARD 6-I = ABSC(10):FORMAT(4A8): 32 alphameric characters to be printed along the abscissa of the picture
- CARD 7-I = FIGTTL(10):FORMAT(15A4): title to be given to the

 Ith figure can be up to 60 characters and must be ter
 minated by \$. Card sequences 4-5-6 are repeated

 NPICT times.
- CARD 8 (A4) = 9999: this is the last card indicating the end of the data input.

A sample input data set is shown below.

6. Sample Input Data Set

```
RUN # 24: CCTLP LEAK DETECTION SIMULATION. (.015LB/SEC AT INJ#4, DUR=5SEC)
 &INLST L=1.,
                 40.9,
                                10.,
                                                    .2775,
                         1 . ,
                                       1 . ,
                                             1 . ,
                                                              .4171.
                         .7788,
      .4021,
                                   .8546,
                                             .7788,
                .4588,
                                                      .7221,
                                                                .7221,
                         .7788,
                                            .4021,
                                                                .3889.
      .7788,
                .8546,
                                   .4588,
                                                      .4171.
      1.,
               2.89.
                         1.0,
                                   2.083,
                                            7.5,
                                                      19.0,
                                                                .8,
      31.,
      10 * 1.0,
      28.0.
               1.0.
                         16.0,
                                    16.,
                                             0.0,
                                                       0.0,
                                                                 18.585,
       36.87,
               42.67,
                        42.26.
         1.069,
                   .09893, .3395,
                                      .09893, .2127,
                                                        1.49,
      16 * 0 . 324,
      .2127,
                .09893, 4.03,
                                          6.445,
                                                      .15255,
                                   6.335.
                                                                .15255,
      .15255,
       10 * 0 . 0
      0.00248,
                         0.00248, .1796, .0, .0,
                3.276.
       4*0.00248,
    LG= 3, 2, 1, 2, 1, 16*1,4,1, 2, 2*1, 5, 2, 4, 2, 0, 9*0,
        2, 1, 2, 0, 0, 0, 2, 2, 2, 2,
```

```
C1(1)=75.E-9,
   C2(1)=1.E-9,
   C3(1)=35.E-6,
   C4(1)=1.E-8,
      Q(4) = 0.015,
      TX(4)=15.0,
      10(4)=10.0.
      10=22,
             19,
                   17,
                       16, 15, 12, 10, 6,
                  49, 23, 47, 1, 27, 29,
      IC=16.
             6.
                  49, 23, 47, 16, 27, 1,
               6.
KEND
&PARM TEMP=900., WS=800., WCT=4., WT1=5., BETA=0.9, WT3=5.0, WEX=1.,
 FINTIM=120., DELI=0.05, IPR=20.0, TCLT=240.0, PDEL=0.10,
 PH=0.1, PA=800.0, K1=0.45, K2=0.2, K3=0.25, K4=0.1,
                                                           R1=9.625E-6,
   R3=7.5E-5, VPLEN=40., TPL=0.5, JCT=10, PRT5=.THUE.,
&END
&DTCTR NUDET=4,
       NODE(1)=49, NODE(2)=49, NODE(3)=47, NODE(4)=27,
       NTYPE(1)=1, NTYPE(2)=2, NTYPE(3)=1, NTYPE(4)=3,
       TLAG(1)=10.0, TLAG(2)=12.0, TLAG(3)=10.0, TLAG(4)=1.0,
       TDLE(1)=14.0, TDLE(2)=15.0, TDLE(3)=14.0, TDLE(4)=10.0,
&END
***** DATA FUR PRINT PLUT FULLOW, LAST CARD MUST BE 19999' ******
04,04,05,02
20,35,40,11
AT NODE 16 S.AT NODE 23 S.AT NODE 47 S.AT NODE 27 S
HYDROGEN CONCENTRATION IN (PPM)
HYDROREN TRANSIENT CONCENTRATION RESPONSE TO .075LB LEAKS
36,37,38,39
& 25 # 1A SH, 255, TA OSAN, 255 TA HUAN, 255 # TA HAN
REACTION PRODUCTS CONC. IN (PPM)
CHANGES IN REACTION PRODUCTS IN RESPUNSE TU .075 LB LEAKS
09,11,20,45,50
H-DETECTOR1$, H-DETECTOR3$, INJECTOR J4$, PUMP NODE $, CCTL VESSEL$
HYDROGEN CONCENTRATION IN (PPM)
DETECTOR READINGS RESULTING FROM .075LB LEAK-INJECTOR J45
10,12
H-DETECTOR25, 0-DETECTOR45
DETC2 IN (WPPM); DETC4 IN (VPPM)
H-DETECTORS READING IN COVER GAS AND STEAM GENERATUR TUPS
```

9999

ACKNOWLEDGMENTS

I extend my thanks to L. F. Epstein, R. A. Jaross, and J. M. McKee for their constructive comments and discussions during this study.

REFERENCES

- R. A. Jaross, Work Plan for Steam Generator Leak Detector Tests in CCTL, T0022-0002-SA-00 (Mar 29, 1973).
- E. S. Amis, Kinetics of Chemical Change in Solution, McMillan Co., N. Y. (1949).
- P. B. Longton, Reactions of Alkali Metals with Gases; Part VI: The Reaction of Sodium with Hydrogen, IGR-TN/C.435 (1957).
- 4. A. K. Fischer, "Studies of Oxygen-Hydrogen Interaction in Sodium: Isotope-exchange Studies," Sodium Technology Quarterly Report: January-March 1972, ANL-7944, pp. 41-44 (Aug 1972).
- 5. D. N. Rodgers and D. Dutina, Recommended Values for NaH Dissociation and the Solubilities of Oxygen and Hydrogen in Sodium, NEDM-12473 (July 1974).
- 6. G. Naud, Contribution to the Study of Hydrogenated and Oxygenated Impurities in Liquid Sodium, CEA-R-2583 (1964).
- P. B. Longton, Reactions of Alkali Metals with Gases; Part VII: Reaction of Sodium with Water Vapor, IGR-TN/C.418 (1956).
- 8. D. D. Adams, G. J. Barenborg, and W. W. Kendall, Evaluation of the Sodium-Water Reaction in Heat Transfer Systems, KAPL-P-1512 (1956).
- 9. D. R. Vissers, J. T. Holmes, and P. A. Nelson, A Hydrogen Activity Meter for LMFBRs, Trans. Am. Nucl. Soc. 14(2), 610-611 (1971).
- P. Vilinskas, "Calculated Hydrogen-Oxygen Equilibria in Liquid Sodium," Proc. Int. Conf. Sodium Technology and Large Fast Reactor Design: November 7-9, 1968, ANL-7520, Part 1, pp. 477-480.
- M. D. Banus, J. J. McSharry, and E. A. Sullivan, Sodium-Sodium Hydride-Hydrogen System at 500-600°C, J. Am. Chem. Soc. 77, 2007-2010 (1955).
- H. C. Pellow, A Model to Predict the Effect of Hydrogen Sources on an LMFBR Steam Generator Leak Detection System, NEDM-13992 (July 13, 1973).
- J. Birault et al., Detection of Small Leaks by Hydrogen Measurements in a Sodium-Heated Steam Generator, Proc. Int. Conf. Sodium Technology and Large Fast Reactor Design, ANL-7520 (1968), Part 1, pp. 345-373.

